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SUMMARY

The objective or this work was to develop a general theoretical framework for cal-

culating fluctuations of signals on waves propagated through random media (WPRM)

and to apply this framework to sound through the ocean; light through the atmosphere;

radio waves through the ionosphere, solar wind, or interstellar plasma; and any other

similar case of waves propagating through continuous media. Comparison with real

data is an important aspect of the effort.

* This report will consist of a summary (with list of references), followed by copies of

the journal articles resulting from this contract that have been published, or have been

submitted for publication. Some work in progress will not be included in detail here,

since it will be discussed in the reports of future DARPA contracts.

The two most common signals sent on a carrier are the phase and amplitude of a

nearly monochromatic wave. If enough bandwidth is available, one can send a pulse,

and one can speak of the intensity and arrival time of that pulse. The technical prob-

lem is then to explain the statistical behavior of the intensity and arrival time in terms

of medium fluctuations, where the medium is described statistically, usually by a power

r spectrum covering a large dynamic range of scales. .

The eventual practical applications of an understanding of WPRM to science and

to the defense department are myriad. The phase of a light wave from an astronomical
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object or a satellite is used by a telescope to focus to a detector; the quality of the

focus depends on the state of the atmosphere - a random medium. A ground-based

laser with large optics attempts to focus on a small spot for a period of time; the atmo-

sphere spreads out the spot by its action on the phase of the wave. Determination of

pulsar parameters depends on observations of radio pulses through a distorting random

medium-interstellar plasma. Communication with spacecraft by radio pulses using

radio telescopes depends on coding schemes and antenna control that must contend

with effects due to the solar wind and the earth's ionosphere. Communication with

earth satellites must contend with the ionosphere, and the effects of a disturbed iono-

sphere (due, e.g., to nuclear explosions) must be predicted. Probing ocean processes,

from large-scales (Gulf stream) on down (internal waves and microstructure) depends on

understanding acoustic propagation through a random medium; for example, a favored

method is to send pulses over long range and observe their arrival-time variations.

Detection of submarines by passive acoustics is limited by ocean fluctuations that con-

trol the maximum antenna size and integration time that can be used for coherent sig-

nal integration. Active sonar for communication has a limited bandwidth due to ocean

fluctuations. Determination of the characteristics of earthquakes, thought to be impor-

tant for earthquake prediction, is done solely by seismic detection. The earth through

which the seismic waves travel has randomness, and this limits the information that

can be gleaned from seismic signals. The same effect limits our ability to distinguish

between underground nuclear explosions and earthquakes, and thus affects our political

stance vis-a-vis nuclear test bans. On the other hand, the distortions of seismic waves

due to the earth's random properties can be used as a probe of those properties and

hence can lead to a better understanding of earth structure.
,

The path-integral method for treating wave propagation has been successfully

used by the principal investigator for the analysis of many experiments in ocean acous-

tics.! This method is therefore utilized extensively in our work. Another school of wave
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propagation theory, which began in the early 1960's in order to explain experiments in

light transmission through the turbulent atmosphere, utilizes a different technique

involving partial differential equations for the moments of the wave field. 2 The moment

equations and the path integral have now been used by enough researchers that the

value of both approaches is appreciated, but the relations between the two methods has

remained confusing to many people.

A first step in WPRM is characterizing the statistics of the random medium. In

this report we will speak of the spectrum of medium fluctuations, which would be

obtained by dragging an index-of-refraction sensor through the medium and taking a

Fourier transform of the resulting time (=space) series. This spectrum is characterized

by a power law (e.g. -5/3 for Kolmogorov turbulence) that implies much more variation

at large scales than at small scales. It is likely that a sensor dragged in different direc-

tions will observe different spectra even on the average. In that case we speak of an

anisotropic spectrum. For example, the strength of the ocean spectrum is much higher

in the vertical than the horizontal for the same wave-number. Finally it is important

to know that the spectrum cannot continue indefinitely at either large or small scales.

At the "outer scale" the spectrum cuts off due usually to finite container size -- the

height of the atmosphere or the depth of the ocean. At the "inner scale" the spectrum

cuts off due to physical processes; for example, viscosity becomes important at scales of

order a few millimeters in the atmosphere and ocean.

This technical report covers the two year period of our contract effort. The next

several paragraphs summarize the technical results we have obtained: more details are

given in following sections. The work has been carried out under the direction of Dr.

Stanley Flatte', and involves effort by Dr. Flatte', senior scientist Dr. Frank Henyey,

two post-doctoral researchers Drs. Dennis Creamer and Rod Frehlich, and a graduate

student (in the UCSD Electrical Engineering and Computer Science Department)

Johanan Codona.

b
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Our progress in understanding the travel time of pulses in random media has

resulted in a paper published in Physical Review Letters,3 as well as results that will

lead to later publication. Pulses sent through a fluctuating medium arrive earlier or

later than they would in the absence of fluctuations, depending on the particular reali-

zation of the medium. The variance of arrival time can be calculated by straightfor-

ward methods in the geometrical optics limit. Our dramatic new result is for the aver-

age arrival time, which we find advanced in weak media. Heretofore, researchers were

of the opinion that pulses were delayed on the average. This effect is of little impor-

tance in communication applications where the average arrival time is usually less

important than the variance. However, the effect can be important in probing a ran-

dom medium for large-scale variations by their effect on average travel time. Our

result implies a possible conrusion between a changing turbulence level and a change in

the average index of refraction on a large scale. For example, ocean acoustic tomogra-

phy attempts to measure the warming of a 100-km-square area of the ocean by an

expected change in travel time of about 20 ms. However we find a change in average

travel time of about 10 ms, due to an internal-wavefield that has no average warming

at all. We have recently studied the range dependence of this effect, and have found

that it grows as the square of the range. This implies that experiments being planned

in the 1000-4000 km region will have major difficulties sorting out the effects of internal

waves from the effects of large-scale structure. Most importantly, the determinations of

internal-wave effects will NOT be contaminated by the large-scale effects.4

The above understanding of travel-time effects arose from studying the mutual

coherence function (MCF) of the complex wave function of the wave field arriving at a

receiver. We have developed quantitative treatments of the MCF in an anisotropic

medium with curved deterministic rays,5 and have applied these treatments to data

from a 35-km, 5-kHz ocean-acoustic experiment, with good success.6 The medium

fluctuations in that experiment were measured by instruments that were independent of

4
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the acoustic information, so no free parameters were available to the theory.

Moving from arrival time, which is related to phase, we discuss amplitude or inten-

sity. We have developed a method for calculating the spatial correlation function of

intensity on a transverse plane through a receiver. This is a long-standing problem

that is of great importance in using wave propagation for probing the structure of a

random medium, because measuring intensity is often the observation that can be made

most easily. In addition, an amplitude-modulated signal will be degraded by intensity

fluctuations due to the medium. The standard theory develops a series solution for the

intensity spatial spectrum. The first few terms are an accurate representation of the

small-wave-number end of the spectrum. In order to calculate the high-wave-number

region many terms of the series had to be evaluated. We have determined a different

series expansion, whose first few terms give the high-wave-number section of the spec-

trum. Hence the evaluation of the full spectrum is simplified considerably. We have

also made considerable progress toward evaluating the intensity spectrum for an arbi-

trary source distribution, going beyond the standard procedure of considering the spe-

cial cases of a point source or an incident plane wave. Our general case will include a

source that is extended over a large aperture. An example of a coherent source of large

aperture would be a large-aperture laser beam. An example of an incoherent source is a

planet, or an illuminated satellite, or an infrared plume from an ascending booster. A

paper describing our results is in review at the journal of Radio Science. 7

Intensity correlations at two different frequencies are of interest for a variety of

reasons. We have derived the intensity cross-spectrum for scintillations caused by a

plane wave passing through a random phase screen. A common approximation for a

case of this sort is the Gaussian-Field approximation, in which the cross-spectrum is

modelled as the transform of the square of the second moment. We have shown how

this approximation breaks down when the outer scale is large compared with the diame-

ter of the scattering disk (the transverse region of significant wave energy). A paper
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describing these results has been submitted to Radio Science.! Furthermore, the thesis

of J.L. Codona will contain much of the two-frequency, extended-source results.°

Because researchers favoring the moment-equation method or the path-integral

method typically knew only one of the methods in any depth, the relation between the

two methods has been a mystery to many. We have expended quite a bit of effort to

understand this relation. We have shown that the two methods are mathematically

equivalent, in much the same way that the Heisenberg and Schr6dinger approaches to

quantum mechanics were shown to be mathematically equivalent. A better analogy for

those familiar with quantum mechanics is the equivalence of the Schr6dinger and Feyn-

man approaches to quantum mechanics. The equivalence extends to the equivalence

term by term of the series solutions for the intensity spectra mentioned earlier, a paper

describing these results has been accepted for publication in the Journal of Mathemati-

cal Physics.
10

In nearly all cases, in order to compare theory to experimental data in WPRM, we

must use a model spectrum for the medium fluctuations. We have developed

phenomenological spectra, as a function of wave vector, that allow for an anisotropic

component added to a turbulent isotropic component."1 This model is meaningful both

for the ocean, where the anisotropic component represents internal waves, and the iono-

sphere, where the anisotropy is due to electrons preferentially moving along magnetic

field lines. We are in the process of calculating intensity spectra in the weak fluctua-

tion region using these model spectra. We have data from an ocean-acoustic experi-

ment that will be used for comparison purposes; the experiment utilized 10-70 kHz

sound over several hundred meters under the Arctic ice.12 We should note that the

weak-fluctuation regime is one in which the intensity series solution for the low-wave-

number regime is the only relevant one.

For more than one hundred years, eclipse observers have noted "mysterious"

bands of shadows moving on the ground just before and after an eclipse. Many exotic

I
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theories of these shadow bands have been put forward, but most observers agree that

they are probably due to atmospheric scintillation that becomes visible when the cres-

cent of the eclipsed moon becomes thin enough (a few minutes before and after an

eclipse). Johanan Codona, the graduate student associated with this project, has made

the first systematic application of WPRM theory to eclipse shadow-band observations. 13

He explains the orientation and contrast of the bands as a function of time, and

describes the effects of eclipse geometry and the importance of wind direction. He

relates shadow-band observations to stellar-scintillation observations. One important

conclusion he draws is that as the illuminated crescent gets thinner, the shadow-band

observations probe higher into the atmosphere. Recently published data14 from the

eclipse of February 16, 1980 in India agrees with Codona's predictions. Further data

from the annular eclipse of May 30, 1984 in Georgia should soon be forthcoming.

We have begun the analysis of seismic data from the Center for Seismic Studies.

Two nuclear explosions in the Soviet Union with good detections on the NORESS array,

which has about twenty elements spaced out to a few kilometers have been obtained.

The first look shows rather small travel-time fluctuations, somewhat at odds with the

large amplitude fluctuations that have been suggested previously. Some of the prelim-

inary data are shown in a subsequent section. We have looked at the data as a func-

tion of frequency up to about 20 Hz, and have seen no obvious systematic differences in

travel time between the different frequencies, except for an unusual change in the

arrival structure between 5 and 10 Hz.

The theory of wave propagation through three-dimensional, continuous, random

media is based largely on the parabolic wave equation. This equation did not appear in

a classical physics context until about 1950. Yet, after 1926 it was used in a quantum-

mechanical context, where it is called the Schrodinger Equation. We have studied the

history of the development of this equation, and have developed some pedagogically use-

ful ideas on how to introduce the Schrodinger equation to students in a manner that is

-...,." " .. ..- ,.- ......... ,. .,.... ,, ,.,,, -. ,..*.*. .,.. ,-. : .,,[ : . ....... . .. . . .. . .. .. ,.... . .: . .... .. .: .
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less mysterious than is used in the present curriculum. A paper on this subject has been

submitted to the American Journal of Physics. 15

We have presented selected portions of our work at meetings of the American Phy-

sical Society at Providence (November, 1984), the Acoustical Society of America at Aus-

tin (April, 1985), and the Union of Radio Scientists at Vancouver (June 1985), as well as

in an invited talk at the International Symposium/Workshop on Multiple Scattering of

Waves in Random Media and Random Rough Surfaces at the Pennsylvania State

University (July, 1985).16

Our longer-term goals will include the implementation of our new theoretical

results into computer codes for calculation of general phase and amplitude fluctuations.

Two directions are contemplated that will require large-scale computing. The first is

propagating waves through individual realizations of random m.dia to compare with

our theoretical results and to extrapolate those results into parameter regimes in which

the theory is not valid. This propagation can be done via a parabclic wave equation, so

that it is a marching solution. The second involves evaluating the theoretical formalas

which involve either multidimensional ordinary integrals, or in some cases, path

integrals. We have begun some computer work on simulation of WPRM using our VAX,

and we plan to implement the code on an IBM-PC that has two FFT hardware boards

" that should allow uninterrupted calculations at about twice the speed of a VAX. These

efforts are in preparation for proposals to do simulation calculations on a CRAY.

Finally, it is desirable to make the comparison in a unified way between these

theoretical approaches and data from experiments in seismology, ocean acoustics,

atmospheric optics, and radio waves through the ionosphere, the solar wind, or the

interstellar medium. Our results will be important building blocks in making that hope

a reality.
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It is pointed out that a continuous random medium can cause an average advance of the arrival
time of a pulse. This advance will occur for unsaturated and partially saturated propagation, but not
in full saturation (which corresponds to the discrete-scatterer case). The effect, which is associated
with Fermat's principle of leasl time, can be observed by measuring the difference between
intensity-weighted and unweighted average'arrival limes.

PACS numbers: 03.40.Kf, 05.40. +j, 42.20Cc. 43.30. + m

Wave packets, or pulses, are frequently used to fluctuations to cause the breakup into many microrays,
probe inhomogencous media. If the wave speed in the and enough large-scale fluctuations to make the mi-

medium varies on scales small compared with the total croray bundle behave like a single ray in its wandering

distance traveled by the pulse, then the medium is from the unperturbed ray. Experiments in waves

treated by statistical methods. "Macroscopic" exam- propagating through continuous random media typical-

pies include sound through ocean internal waves,ta ly fall into this category. We deal only with the impor-
light through atmospheric turbulence, 3 and radio tant case in which the transverse wandering from the
waves through plasmas such as the ionosphere, 4 the unperturbed ray is small compared with the range of

solar wind,5 or the interstellar medium. 6 Microscopic propagation.
examples include various "sounds" through liquid Briefly our results are as follows: If the travel time

helium, 7 and waves through inhomogeneous con- of a pulse is averaged over an ensemble of the random

(.P densed matter.a These continuous media may be dis- medium, with each pulse weighted by its intensity,
tinguished from media consisting of discrete scatterers then the average pulse is delayed, regardless of the
such as would occur in light transmission through fog, 9  type of propagation behavior, in agreement with previ-

or in wave transmission through a gaslike medium c'us results."' 12 However, if the average travel time is

with random-point particles.' 0  obtained without weighting by pulse intensity, then a

This Letter points out that a fluctuating continuous pulse advance is expected for both unsaturated and
medium can cause an average advance of the pulse ar- partially saturated behavior, while a pulse delay
rival time. All previous analyses have dealt with situa- remains for the fully saturated case. The difference
(ions in which puises are delayed on the average. 11" 2  between intensity-weighted and unweighted travel

By convention, 112 the ensemble average of a random time probes the variance of the first derivative of the
medium is taken as the medium reference state, and refractive index, smoothed over a microray bundle.
the small fluctuations about this reference state are To explain our effect qualitatively we first take a
thus by definition a zero-mean random process. The simple special case. Consider a point source and point
arrival-time advance or delay is relative to the travel receiver separated by range R, and a homogeneous
time through the reference states. Thus, for example, medium in the absence of fluctuations, so that the un-
results through turbulent air or plasma are relative to perturbed ray from source to receiver is a straight line.
quiescent air or plasma, not vacuum. The random medium is concentrated in a "phase

The behavior of a wave propagating through a ran- screen" at a distance z from the source. This screen
dom medium is controlled by relationships between has the effect of advancing the time of a wave front by
the wave number (M) of the propagating wave, the a random amount i(x) where x is the position on the
range (R), and the strength and size of the medium screen, and t(x) is a stationary Gaussian random pro-
fluctuations." 2 Unsaturated behavior corresponds to cess with zero mean. (We take x as one-dimensional
one stationary-phase path (ray), and occurs if the for simplicity.)
medium fluctuations are weak enough. In fll6, saturat- Weak fluctuations. -In the geometrical-optics limit
ed behavior the original ray breaks up into many new only one ray exists from source to receiver. The travel
microrays which are statistically independent of each time for a path through point x is

other. Propagation through a medium of discrete T(x)- To+O.ScF' Ax 2- ,(x), (1)
scatterers falls in this category. Partialb' saturated
behavior occurs in a strongly fluctuating medium with where A -'N z (R - z)/R. By Fermat's principle the
a power-law spectrum, which has enough small-scale ray is at the point x, such that T(x,) is a minimum.

© 1985 The American Physical Society 9
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For the case of weak fluctuations we may expand I(x) ing effect exactly cancels the Fermat term. leaving a
as resultant equal to the geometry effect alone. This oc-

curs because a positive fluctuation, which delays the
S(x) - to + I'X + 0.S . (2) pulse. acts as a converging lens to increase the inten.

The position of the ray follows to first order as sity.
The simple example of a phase screen in the weak.

x, - A-I cot. (3) fluctuation geometrical-optics limit has illustrated our
point. We will now make some remarks on generaliza-

T v o e slions to extended media and strong fluctuations which
" T(x,) - To+ O.ScA - It'2 - to - coA- It" .  (4) we have treated rigorously but do not have space

i cwithin the Letter formal to describe in detail. We then
This case requires that, typically describe a rigorous extension of these results by means

tcoA - It'l1 << Itro. (5) of a path-integral method to include diffractive effects
in a power-law medium.

But t (and hence to and I') are (by construction) ran- There is no difficulty in extending the above results
dom variables with zero mean. Therefore the to term from a phase screen to extended media in which (6)
will disappear in the average travel time and the only and (10) are replaced by

T - effect of the fluctuations will come from the t' terms.
These terms arise because the ray has moved away (T)- To"- -O.5cr"fdzA-I(z)

*' from its unperturbed position. The first t' term is pos-
itive, corresponding to a pulse delay, and represents
the effects of geometry; the perturbed path is physical- (IT) - To- +0.5cr' fdz A -10)
ly longer than the unperturbed one. The second I'
term is negative, corresponding to a pulse advance; we x ifdz'pzz')l (12)
call this the Fermat term; the ray sought out a region

of the medium with a pulse advance. The Fermat p.(zXz)-(8~,t(z)8xs(z')), (13)
term is twice as large in magnitude as the geometry where 8,s(z) is the transverse gradient of the refrac-
term. The average travel time is tive index due to the fluctuations at location z along

(T) - To -0. Sc0A- ('z), (6) the unperturbed ray. These results require the Mar-
kov approximation [that is. the quantity in square

so that the pulse on the average arrives early. brackets in (1) is a local function of 4. If an incident
There is a subtlety to this result. In the weak- plane wave rather than a point source is used, all three

fluctuation limit the intensity is controlled by the terms (geometry, Fermat, and focusing) are reduced
focusing due to the curvature of the wave front as it by a factor of 3. If the Markov approximation is not
exists from the phase screen. It is not difficult to show made, the ratio between Fermat and geometry remains
that the intensity I is, to first order, - 2. while all terms are modified by terms of order

I - I +A- 'tot". (7) Lt/R, where/., is the longitudinal correlation length
of the medium fluctuations.Consider the intensity-weighted average travel time Strong fluctuations.-If the medium fluctuations are

( - - - strong enough, one can show in the limit of small
* 17x)) T, .Sco 1(*2>wavelength that both the Fermat and focusing terms

- coA -I (tot"), (5) become negligible. This occurs when the intensity
w fluctuations become of order unity. From (7) this cor-_ ' where the last term comes from the correlation responds to

between the intensity and the travel time. For any
random function i(x) whose Fourier components are A-1cC9("g# 2) lit 1. (14)
uncorrelated (i.e., the correlation function is If this condition is satisfied, the unperturbed ray
translation-invariant) breaks up into many microrays that are not minima,

t(t") -- (0). (9) but extrema, in accord with Hamilton's principle of
stationary action. The converging (or diverging)

Therefore lenses now are so strong that caustics occur, destroying
(IT(x,)) - To+0.ScOA -t(0) (10) the correlation between intensity and pulse delay. The

Fermat term disappears because the microrays are not
In other words, the intensity-weighted average travel at global minima; hence the geometry term strongly

time is delayed by fluctuations by exactly the amount dominates, resulting in the validity of (10) even for
that the unweighted average is advanced! The focus- unweighted average travel time.

t0
* .
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If t(x) has a power-law spectrum, then the above and the result for the intensity-weighted average travel
argument must be modified to separate the effects of time is (10) exactly. 5

large-scale and small-scale fluctuations. The small- If we attempt to model D(u) at infinitesimal u as a
scale fluctuations, if they alone satisfy (14). break the fractional power law, then the average travel time
unperturbed ray into a bundle of microrays of size L,. diverges.
Fluctuations larger than LP correlate the travel times This result for finite wave number predicts a delay
of all the microrays as though they were a single ray, equal to the geometry term. Most importantly this
and cause the average pulse arrival time to behave ac- derivation has made no distinction between the weak-
cording to the weak-fluctuation rule (6). where (t '2) is and strong-fluctuation cases, and can be easily general-
to be interpreted as coming only from scales larger ized to the extended medium. We can conclude that
than L,. It then becomes crucial to estimate L,. For (IT) - To is equal to the geometry term alone regard-
the phase-screen case, we find less of the fluctuation strength, a result already sug-

gested by the geometrical-optics calculation.
L coA-'(" 2) 12 . (IS) When (18) is generalized to an extended medium by

The difficulty here is defining the average travel time a path-integral formalism the same conclusions are
of a pulse that itself has complicated structure due to easily shown, subject to the additional assumption of
microrays. the Markov approximation.

Path-integral result.-A major limitation of the An important modification of the above result oc-
above treatment is its restriction to cases of very small curs if, in the absence of fluctuations, the medium has
wavelength, and the related requirement of defining focusing properties. In ocean sound propagation this is
an inner scale for the medium fluctuations (in order due to the sound channel. In radio-wave propagation
for (t"2) or even (I' 2) to be finite). The path-integral from pulsars this might be due to very large-scale
method can treat the case of finite wavelength for medium fluctuations that are effectively frozen during
intensity-weighted travel time. the time of observation. The modification can be sim-

To arrive at average pulse travel time we note that ply expressed by generalizing A -I(z) in (11) and (12)
for a curved ray.3 The key result is that A - 1(z) can be

(IT) - To negative for various regions along the ray, and hence
= - (i/co)a,(*(ko+ k )¢(k0))I,-0. (16) the geometry term can be negative for curved rays. This

complication is crucial to the comparison between cal-
where k0 is a central wave number of the propagating culation and experiment in the ocean, though probably
wave, k is a deviation wave number whose excursion not in other media. Note that this effect provides
represents the pulse bandwidth, and 4o is the reduced another, different mechanism by which fluctuations in
wave function at the receiver. Let us treat the phase- a medium may cause an average pulse advance. Final-
screen case for simplicity. The second moment as a ly, dispersive propagation, such as occurs for radio
function of wave number is known to be13.14 waves through plasma, can be treated with the same

(q'(ko+ k) (ko) techniques.
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The mutual coherence function (MCF) of the acoustic wavefunction from a point source is derived
by the path-integral technique for transmission in the presence of a sound channel. Separations in
time, transverse horizontal position, vertical position, and acoustic frequency are treated.
Approximate coherence times, lengths, and bandwidths due to internal-wave fluctuations are
derived. The MCF of frequency is explicitly evaluated for fluctuations due to internal waves. The
shape of an ensemble-averaged pulse is derived from the MCF of frequency.

PACS numbers: 43.30.Bp, 43.30.Ft, 43.20.Bi, 43.60.Cg

INTRODUCTION by Flatti3 : The sound speed can be expressed as

The mutual coherence function (MCF) contains impor- C(it) = Cot I + UoAz) + p(x,t )], (1)
tant statistical properties of the acoustic field that has tra- where CO is a reference sound speed, Uo(z) is a dimensionless
versed a medium filled with random fluctuations. For exam- function of the depth z representing the deterministic sound
pie, the coherence time and coherence lengths that channel, and p(xt) is a random, zero-mean function of posi-
determine the maximpm effective integration'times and ar- tion representing the effect of medium fluctuations such as
ray lengths that can be utilized in sonar systems are con- internal waves. The wave equation for an acoustic wave is
tained in the MCF. We show in this paper how to derive a unaffected by the time dependence of # because p has only
number of results about the MCF which were indicated in components with very low frequency.
our earlier works on the subject.' " In particular, we show The acoustic pressure q obeys the wave equation
how to derive the MCF from the path-integral technique for
transmission in the presence of a deterministic sound chan- d qi - C 2V2  0. (2)
nel. The parabolic approximation consists of considering

The MCF of frequency controls the coherent band- solutions in which waves are traveling only at small angles to
width and also describes the behavior of the ensemble-aver- a particular direction; in the ocean this direction is in the
aged pulse for a pulse-transmission experiment. In this pa- horizontal, labeled by x. Thus we try
per, we derive the path-integral expression for the MCF of p.= exp[4qx - o)) O(x,t 1, (3)
frequency, and then give explicit rules for calculating it in
the special case of internal-wave medium fluctuations. We where q and a are the wavenumber and frequency of an
are able to explicitly evaluate the case of internal waves be- acoustic wave traveling along the x axis at speed Co: that is,
cause the accepted spectrum of internal waves implies a q = o/Co. The "reduced" wavefunction 0 is slowly varying
nearly quadratic structure function and path integrals for in space and time compared with q and o, and satisfies a
quadratic actions are known. parabolic equation'-'

An appropriate Fourier transform of the MCF is the
ensemble-averaged pulse (EAP) at the receiver for a narrow 2 i= [-a,, -a +2q 2 (Uo + )J *. (4)
transmitted pulse. With no sound channel the EAP ran Equation (4) is a Schrodinger equation, and thus its so-
sharply and has an exponential tail. We show how the pres- lution can be directly expressed in terms of a Feynman path
ence of a sound channel can cause a precursor region to the mtegra6
pulse, and can cause the tail at late time to decrease in inten- integflJ
sity. O=N f Dz exp(iqso(z) - iq ju [x,z(x),t ]dx), (5)

1. PATH-INTEGRAL EXPRESSION FOR THE ACOUSTIC where the path integration (indicated by D) is over all paths
WAVEFUNCTION z(x) = [ yx),z]x) connecting the source to the receiver. The

We begin with the wave equation for the pressure as a phase associated with the path in the absence of fluctuations
function of space and time in the presence of a spatially vary- is
ing wave speed. We follow the notation ofthe review article = qV~ VJ [j(B, y)2 + t1d, 2)2 - Uo,4z) ] d, (6)

8O'0 iave frm the Univenity of Califoria, Santa CM CA 95)W4. and Nis a normalization factor chosen by convention so that
"Afuted with the Univesity o( brni6 Sma Diko. 0M]I for# = 0.
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it. PATHINTEGRAL DERIVATION OF THE MCF-THE deterministic rays, which can often be well estimated. At

MONOCHROMATIC CASE caustics our method breaks down.
The MCF for the sigle-frequency case as ( #,"2)$ I)), In terms of the new displacement path variables I ll 

where the angle brackets indicate averaging over the ensem- becomes

bie of random Ix functions. The MCF measures the coher- -C
ence between the acoustic fields at two different points. la- $o(I} - S0(2) = J f - JId, y:J2 + au,)2

beled by I and 2. These points may be separated in space, _

time, or both. We treat spatial separations that lie in the (y,z+ -,v)1

plane. U;(v, - v2) - I U;(2 - 2)]dx . 11
The use of(5) and (6) results in Now change variables once again, to

*(2)0(l)) a(x) = yl(x) - y2(x), $01x) = I y1(x) + Y2(x)1/2,

__ I= Dz. Dz exp(iqSo(1) - iqS0o2) u(x) = vX) - v2(x) = z(x) - z 2(x), (17)

A 0w(x) = (v,(x) + v2(X)j/2 •

- iq u(z,,t,)dx + iq JA(Z21,t)dX). (7) Then the unperturbed phase term becomes

The ensemble average applies only to theps, so we may write So(1) - 52)= (d. aa,6 + a, ua, w + 8, z,ad u

f - U;u - U; uw)dx. (18)
= IN12 JDzI Dz% exp(iqS(l) - iqSo(2) -j , (8) Now the crucial observation is that V12 is a function mainly

where of the difference between two paths z, and 2, and not a
function of the average (z, + z2j/2. The path integral (8) is

V12 = q2 P(z,,tjdx - fR(z2,tzdx (9) being done over four scalar functions a, 6, u, and w. The
( 'A 0  above observations correspond to noting that V,2 is not a

and we have used the fact that function of P and w.

(exp(ia)) = exp( - j(a')), (10) givesConsider the,8 path integral. The only 6 term in I 18)

if a is a zero-mean, Gaussian random variable, such as any :s 1
combination ofps is assumed to be. Even ifa is not a GRV, f, / e
(10) can still be true if the higher moments of a are small.

The problem of finding a useful result for the MCF now First, integrate by parts within the x integral, keeping a and
reduces to evaluating' the double path integral in (8). We 6 fixed:
first express the unperturbed phases in terms of the path : -a
variables using (6): 1, = f D,6exp iq I - (.a)6 ]dx) . 120)

S4l) - S2) = [ (d. yj) -1 ( 1. y) + y(B. z')2 Now the 6 integral is direct, in analogy with the definition of
the Dirac delta function, and yields a restriction on a:

- 4(a. z )- U0(z,) + U/z 2)dx, (11) a.a = 0. (21)

and we expand the deterministic sound channel function to The boundary conditions for a can be expressed easily for a
second order in the displacement of the paths away from the point source:
equilibrium ray. That is, we define z,(x) as the function that
satisfies the ray equation (in the parabolic approximation):

., z, + U;(z,) = 0 (12) Thus the solution for a(x) is

with boundary conditions a(x) = a(R x/R), (23)

z,(O) = z,,, z,(R ) = [z() + z(2)j/2. (13) which is the separation between two straight lines from the

Define two new path variables by source to the two receivers at positions I and 2. Thus the a
.X 2( path integral is effectively done despite the dependence of

., (x)l,) - z,(.x), V2(X) z2(x) - Z,(x), (14) V 2 on a.

and expand Udzj) around the point z,(x): Consider the w path integral. First we can integrate the

CU/(ZSi U=O,)+ UlV, + I Uowe, ,) , zu term by parts within the x integral yielding
( - J,,.,z,)u. But (12) shows that this cancels the Uu term.

where it is understood that U and U are evaluated at z,(x). Integrating the 8 ud. w terms by parts finally yields

This expression will be valid as long as the effective bundle of it
acoustic energy stays well confined around the unperturbed S( 1) - So(2) .- u - U ;uiw dx, (24)

ray, z, (xj. If more than one solution of(I 2) exists (determinis-
tic multipath), then we treat one unperturbed ray at a time. and the w part of the path integral yields, again in analogy

Addition of the results depends on the coherence between with the Dirac 6 function:
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Au + U; 0u+. 125) are evaluated in Esswein and Flatti. Because (311 is nearly
The boundary conditions for u can be expressed in the same quadratic the logarithm may rather accurately be replaced

way as 122) by a constant. The best constant to use can be shown': to be
In 0. where

ulO)=0. ulR)=zll)-z12). 1261

The solution of125) and 126) is easily shown to be the separa- 0 = Jdx( p")L 1321

tion between two nearby rays in the sound channel, which Evaluations of 0 for some particular examples are given by
start at the source and end at the two receivers. Esswein and Flatte."t

Thus the path integral is done. and the only require- The evaluation of f.0.0) for internal waves is compli-
ment is to evaluate V,, at the separations that have been t he auino between for internalio i
determined solely from the integrations involving the unper. cted bthvouplingsbeteenrhornzonta internal wa-
turbed phase terms. A stationary-phase approximation has structure and both vertical structure and frequency.'2 Nu-
been invoked to define the unperturbed ray in the absence of mencal evaluations have been done'2 and seem to follow

fluctuations. However, the fact that no stationary-phase ap- approximately the law

proximation has been invoked for propagation through the fla,O,k z Ba', 1331
fluctuations should be emphasized. But V,2 for z,(x) and where the power p is empirically about 1.5. Thus our final
Z2(x) being nearby rays is defined as the well-known phase approximate results for the monochromatic MCF are
structure function: ( 0(10(0)) = exp[ - 0.5(//tol:j, (341

V,,(a,u = ray separation)=-D(l,2). (27) ( ,(Az ¢0)) = expf - 0.5(Az/zo)21 , 135)

Thus the result is ( bAy) 00)) = expi - 0.5(y/yo) ] , (36)

( 0*(2)0(l)) = exp[ - j D(1,2)] . (28) where the coherence time to, vertical coherence length zo and
At this point it is worth noting that a number of end- horizontal coherence length Yo are given by

point terms that resulted from the integrations by parts haveA
been subsumed in the normalization, which is required to t0 2= 9 If dx(. 2')Lp oJI2 

, (37)
give unity at zero separation of the two receivers. o

- The resuic 128) has been obtained previously in many z- 2 = rinO dx(/a")L,,jk 1 ,38)
different ways. t " ' The path-integral derivation provides a 0
means of seeing the physics of the approximations in a new
way. The only approximations have been the parabolic ap- yo P = q2 fdx(/u2)LB, 391
proximation and that V, 2 is not a function of j or w. The
result is valid in the presence of a deterministic sound chan- and the evaluations of all the quantities in (37 39) can be
nel, regardless of whether the wave fluctuations are unsatu- done by the methods of Esswein and Flatti.'2

rated or not. The limitations on the result come from the Comparisons of 1341 and (37) with experiment are done
approximation being violated by inhomogeneity and an - in a companion paper." It would be very desirable to com-

tropy.3  pare (35) and (36) with experimental data in an appropriate
parameter range in which internal waves should dominate.

Ill. EVALUATION OF THE MONOCHROMATIC MCF FOR
INTERNAL WAVES IV. PATH-INTEGRAL DERIVATION OF THE MCF OF

ACOUSTIC FREQUENCY
Under the Markov approximation, the phase structure

function can be expressed as We will treat in detail only the MCF for frequency sepa-
rations with no simultaneous space or time separations.

D(1,2) = 2q2 1 dx(A 2 )Lrf(a,u,t). (29) Then (8) is replaced by
.It}2 . ( *{ q 2 )0 q j ))-

where (,u') and Lp have been defined previously2" and
f(a,u,t) is the phase correlation function (PCF) defined by = ;N, Dzi D. exp[iqSo(i) - iq,S2) - V,:].f
Esswein and Flatti.'2 The PCF has been evaluated for inter.
nal waves by Esswein and Flatte,'2 using a combination of .401

analytical and numerical techniques. Since a and u are both where q, = a,/Co and
functions of range, x, (29) must in general be evaluated by a ( it a ))
numerical integration code. V,2 = ((q, I p(z,Odx - q2 f. 14

At small separations, approximations to the PCF are
possible. For example, The unperturbed phase is expressed in the manner of

f(O,0,) = flaI ,, (30) 1) as A

f(0,u,0) = jIk 1lu2 ln(uou), (31) q S°(1) - q2SO(2 f f[ ql(Oy,) 2 - t q2(dyj)

where Iw0l is an average internal-wave frequency that is
dependent on the local depth and position of the ray z,(xi, " q,(d ., z,)' - I q 2(W Z)

and likewise the quantities I k i. and u,. All three quantities - q, U(z,) + q2 Uo(z2)]dx. 421
be
1718 J. Acawt. Soc. Am., Vol. 77. No. 5, May 1965 Dash en et al Ray co#erence funct'oi in soundl channels 718S
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Applying the samechangesof variables indicated in (141 V1 --= q2( f M(11)dX -

and (17).we(d a))()

qSdl) - q2oA2) - f[oIl) - d2)1 + 2 A [( + AII(f Mal ) - (z1)dx

+ 1(6 a ) + (a .w)2 + 1(.0. , ) I ''L W +'p' f JA.2w ) / 0

2a., + (,.zj- 2uo.((f zx ft x)2 ) (5

- 2U;w - Uawl - I U;w u2]dx, (43) The lack of dependence of V,2 on the centroid of the paths
whe (( B,w allows us to neglect the #,dq term and to estimate the

": where iT=(q, +- q2)/2, Aq=q, -q 2 , and S4l)- S(2) is Iast ternas (4q/ )c 2 where

expressed in these variables in (18). Again we observe that

V,2 is not a function of 0 and w, and this allows the path 402 = ( J(z,}dx). (51)Sintegrals over,6 and w to be done. However, in this unequal41 fJzWX)

frequency case the path integrals are not analogous to 6 func- Since 0 2 is a function only of the unperturbed ray z,,
tions; instead they are Gaussian integrals because of the qua- and not the paths, the path-dependent part of V,2 is only the
dratic forms in (43). first term of (50). Using the Markov approximation at this

Consider the B integral. Collecting 6 terms in (43) we point we have (32) and
have it

I' = f [iexp[L.q I" ((a.,0)2 + A2 a a pa') dX. V, 2 = (q/ q-2 2 + 241 (p 2 )Lpf(auO)dx. (52

2= Do - Aq The dependence on paths is contained in f(au,0), and the

(44) expression for the MCF is now

This path integral is done by completing the square, and, r I 1 4q 1

aside from factors that will be subsumed in the normaliza- (*(q2)0(q)) = exp - ' "-2" (4dq), (53)

tion, yields A (q)

I,=~~-2 j _fAq d ) (4)NfDaDuexp(-+if (a. a)' + uLuj]dx
)2 f

Now consider the w path integral. This can be expressed
as -- = fAV (UM2)Lpf~a,u,0)dx). (54)

f L 2J A The evaluation of the path integral, Q (Aq), depends on

(46) our understanding off(a,u,). We make use of the approxi-
mations given in (31) and (33), and our knowledge of the

where L is an operator given by magnitudes of B and I k 1, to justify the neglect of the de-
L = - U. (47) pendence offon the horizontal varable a (because B is very

Note that integration by parts has been used in several places small). The a integral then yields

to obtain (46). Evaluation oflI is done by completing the a
square and yields, apart from normalization terms, Q(4qJ =NJDexp- 12 jLu dx

4 exp( -- 3 2 f ud ) (48)2>~kIU

Combining (43), (45), and (48) we And (40) becomes This is a one-dimensional path integral with quadratic

action, whose explicit evaluation will be given in the next

(*(2)(,)= auep-i qlqz section. Note that the normalization N is set so that
fJ " 2 4q Q (Aq) = I if = 0 everywhere.

x [(.a)2 + uLu]dx - -IV, 1 ) V. EVALUATION OF THE MCF OF FREQUENCY

The evaluation ofQ(,q) from the path integral (55) can
be done in at least two useful ways. The first involves fixing

First, let us note that if Aq = 0, then this path integral is dq and solving an ordinary differential equation for Q. The
essentially a stationary-phase integral around the extremum second involves an eigenvalue method that finds the singu-
of the range integral in the exponential. The solutions for a larities in Q (Aq).
and u are then (23) and (25) and (26), respectively. This MCF It will be useful to express 1 in the following way:
expression (49) is a path integral over two scalar (or one vec- i A

tor) path, and it cannot be simplified without some assump- Q (Aq) = N Du ex - uMu dx (561
tions about the nature of Vi,. Let us express V,2 in terms of ? 4- 2 - )

and Aq: M (x) =-,. - U;idq in 0 ( p2 )L , k , (57)
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where we have used the fact that qjq j The solution of TABLE I. Pfaaeten t Q(Jul t wo examples with constant FIX! and
this quadratic path integral is given in terms of the solution U;Fu tat 10 1s' mT n Uniatsfoer be -am i. Unitsfortheale.

values am IMaS)' The agewvaius were calculated by a pere! comspute
of a differential equation' for a function S (x, q). The equa- cd ICC; they should agee with 1721 for these smple ceamples. which they

tion is do reasonably well.

MS = 01 (58) U;Ikm-. 0 0.034

with initial condition S (0,Aq) = 0. Then r/2 1,02 - 2.61
QjAqj = [$(Rt,Oi/$(R, q)] "  (59) ro0.65 2.76

Note that S is complex. cc (72) cc 172)

The form (59) is useful for finding the behavior of the

MCF at small frequency separations. (Remember that the A, 0.30 0.3t - 260 - 2.59
frequency separation A = AqC, and we define 1 2co.) A 3.22 3.24 -0.18 -0.18

A, 7.24 7.29 3.34 3.85
Consider M as made up of two parts A, 12.87 12.89 9.47 9.49

M = L - ,o4M, (60) A, 20.1 20.1 16.71 16.47
A, 80.4 80.6 77.0 77.2

M = W 'ln 0( )Lpik' 1 (61) A,, 281 181 178 179

Considered in position space these operators are infi- An 322 322 318 319

nite-dimensional matrices, and the inverse of L can be found

by the equation The behavior of the MCF near zero Ac is only part of
( - a.. - UO)L - I(xx') = 6(x - x), (62) the information available. To learn more, we return to (58)

hence, and solve it by an eigenvalue method:

L -(xx') = g&x'), (63) LS.(x) = A. F(xS. (x), (69)

where g(xx') is the Green's function defined in Ref. 3; it F(x) = C 'In 4 (u')L jk , {70)

depends on the sound channel through U". with boundary conditions S.(0) = S.(R) 0. Then
At small Ar, we may solve (58) by a perturbation expan-

sion. This yields Q (Ao) =( 1_ -i-4o/A.)- . (71)

In (Q(Ar)J = - Tr(L -'MI) There are many numerical methods for solving (69). We
2 find the most effective to be expanding S.(x) in Fourier

(60r) modes along with the eigenvalues A.. In applying this meth-
4 Tr(L - 'M, L - 'M,), 6 od one must be sure that enough Fourier modes to accurate-

where Tr indicates the trace. The traces become integrals in ly represent the S. up to the desired maximum n have been
the infinite~imensional case, so that we may finally express taken.

h nBoth F(x) and U" affect the values of A.. As an exam.

lnpQ(Ao)e, take U and F(x) = constant. Then
]niAo] = ' A woT )2, (65)} e a e U

fA. =F- [(r/R )n - U;], n = 1,2 ...... (72)

" 2o (p 2 )LIk V)j g(x.x)dx, (66) Note that all oftheA. arepositiveifU; = 0(nosound chan-
2 A nel). In general, a nonzero U " can pull the lowest lying A.

,, \24)k dX(t j,)L, k 2 below zero. The number of A, below zero is equal to the

x I"D('2)L.,k} Vr x')]2, (67) 10 .0
*0.

where it is understood that the first (p 2)L,.k I isevaluat- 0

ed at x and the second at x'.
Although (65) is only exact as Ao---O, it is worthwhile to ! e

model the MCF as 0.2 - - FIG.1. The.MCF of frequency for
.~no sound channel and constant

.(A.2 1 00 F4) = 10' )msVkm2. The r Sue is(0/*{aO,)(a)) =exp -- ---L taken to be 35 kun. The solid curve a
2 a 60 . calculated by a eneral computer

-- code. The doned curve is the approx-
exp~i, - j(Ao'rol], (68) " 40 :- imaon 16with 166)and67L which

where the second exponential comes from the Q function. In 20 give r, = 1.02 ms and re = 0.65 ms.

this form it is clear that r, is a shift of the time origin for the 1 :-
frequency determination, and ro is to be compared with /o 2 . -

to find which term is more important in determining the -20

width of the MCF. That is, r-' and o/0 combine to deter- o 50 100 150 200

mine the coherent bandwidth of the transmission. .1a Hz)
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0 The tais of the EAP at both early and late times ;-re
o8 -controlled by the smallest A,.. This can be seen by noting that
067 1) is a product of terms. so its Fourier transform is a convo-

olution of the Fourier transforms of all the terms separately.
0 4 In a convolution, the tail is controlled by the term with the

- 02 2--f- widest Fourier transform. Therefore we need the Fourier
00 FIG. 2. The same as Fig. 1. except transform of

the sound channel is represented by20 , . constant U ;, - 0.034 (kum l- ' .  11A o =I - id /A OX -, 2 173)

- r,= - 2.61 ns. and 1o
= 2.76 ms. where A,, is the eigenvalue with the smallest magnitude with

*- - the appropriate sign. The Fourier transform is
--20,

A. -'

* 403 P.,()=A,1T feA , A,,r>O,

-80 L=0, A_ r<O, (74)
0 50 100 150 200

Acr (Hz) where we have normalized so that f (I(rJ)dr = 1. To find
the shape of the tail we convolve this function with the rest of
the MCF: that is, with a Gaussian of standard deviation 0/

" number of caustics the unperturbed ray has passed from a, and all the other eigenvalue terms, resulting in a tail given
source to receiver.' s As a particular A, passes through zero, by
the receiver is passing through a caustic. rr

Consider two examples in which 0 /a = 2.8 ins, P.,r)=exp (- --- ) , I I--( , -

F= 02 ms/km2 , and either U; =0, or 0.034 km- 2  A
These values are comparable in magnitude to those in the IA/ 2 A\p '
AFAR experiment" which, however, has an Fand U" that X L"-) e-,, m >0. (75)
vary with range. The range is taken to be 35 km. Table I gives
the values of the eigenvalues for the examples, as calculated The smallest positive eigenvalue dominates the very late r
from our numerical solutions to (69). They agree with the behavior. The smallest negative eigenvalue gives a precursor

* analytic expectation (72). (The same computer code has been and dominates the very early r behavior. If there are no nega-
used in calculating the eigenvalues for the AFAR experi- tive cigenvalues (a caustic has not been passed) there is no
merit.") Figure I shows the Q (Au) for this case. The values of precursor.
r, and ro calculated from (66) and (67) are given in Table I. Consider the examples given in Figs. I and 2. The corre-
These values fit the phase slope and the li/e' magnitude sponding EAPs are shown in Figs. 3 and 4 along with the
half-width rather well. predicted tail and precursor from (75). Note that the approx-

When U g is set to 0.034 km- , the resulting Q (d) has imation for Q given by (68) would give the position and gross
quite a different phase behavior; the phase slope has changed width of the pulse, but would not give the precursor in Fig. 4.
sign (Fig. 2). The significance of this slope is discussed in the Note also that if the controlling eigenvalue has a large mag-
next section. The values of r, and ro calculated from (68) and nitude (such as A3 = + 3.85 ms for tho positive r tail) then
(67) are given in Table I, for this case, and again, they fit the the Gaussian remains in control to much larger r. The time
phase slope and magnitude half-width rather well. at which (75) would become relevant is approximately

r=A. (0/)', or 30 ms in the case of Fig. 4.
The EAP calculation is valid whether the transmission

VI. PULSE TRANSMISSION is unsaturated or not. In the unsaturated region a narrow
Consider the Fourier transform of the MCF as a func- transmitted pulse will be received as narrow, and the precur-

tion of Am label the conjugate variable as r, which we call sor or tail of the EAP is formed by there being a probability
v pulse time. If an experiment sends many pulses from a fixed

source to a fixed receiver, then the shape of the ensemble-
*" averaged pulse (EAP) is the Fourier transform of the MCF. t ..

What are the meanings of the various parameters we ---t'. 7~ 0.1 ""
have used to characterize the MCF, sch as , rs, and the set W I\
ofA,? First, i, is a shift in the mean arrival time of the EAP. o.o! -
That is, the medium fluctuations cause a mean shift of the A r "

* pulse from when it would arrive in the absence of fluctu- v 000: r
[-. ations, and that shift is ri. Unfortunately, very few experi-

ments (none in the ocean) can measure the pulse time in the 0.0001 '-20 -10 0 10 20

absence of fluctuations, and the absolute sound speed is not 2 -01)

known well enough to calculate it, so a prediction of r can-
not b: dirnctly tested. Second, 70 is a contribution to the FIG. 3. Ensemble-averaged pulse calculated for the example given in Fig. I.

The solid curve is calculated by a general code. The dotted curve is from
ave', ag. wid, I of the pulse, as is 0/o. Both act as standard (681. The dashed curve is the prediction of the tail from (75) where the con-
deviation. in a Gaussian EAP. trolling eigenvalue isA, whose value is 0.81 ms'.
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4. F. r. - -

All of the parameters that can be used to approximateI the various MCFs and the EAP can be evaluated on a VAX
o1 computer in a few seconds for a typical ocean-acoustic ex-

periment.
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Abstract

A series expression is developed for the fourth moment of a beamed field

incident on a random phase screen or an extended medium. The series has a

symmetry that allows its first few terms to generate useful approximations at

both low and high spatial frequency. The parabolic wave equation, the Markov

approximation, and Gaussian refractive index fluctuations are assumed. The

result for the phase screen is obtained by Green's-function techniques. The

extended-medium result is derived in an analogous manner using path integral

methods. The same results are also derived by moment-equation methods. The

behavior of the leading terms is compared to previous results for plane-wave and

point-source geometries.
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1. JNTJODU(ON

Many years of research have been devoted to the study of wave propagation in random

media (WPRM). The first comprehensive review of the field was by Tatarskii [1971]. followed by

Prokhorov et al (1975], Ishimaru (1978). and Fante (1975.1980). The propagation of radio

waves through the ionosphere is reviewed by Yeh and Uu [1982]. The phenomenon of interstel-

lar scintillation is reviewed by Rickett (1977] and Rickett et at [1984]. Sound propagation

through the ocean and path integral techniques are discussed by Flatte et al [ 1979] and Flatte

[1983].

We consider waves propagating from an arbitrary source distribution in a random

medium. We assume the statistics of the medium are locally homogeneous, and we make the

Markov approximation; i.e. the field fluctuations induced within a correlation length along the

propagation direction are weak. For a more complete discussion see Codona et a], [1985].

The wave propagation is characterized by narrow angular scattering due to the small random

fluctuations in refractive index. It is then convenient to write the complex monochromatic

scalar field as E(Lz)e!*z where z is the propagation direction, I is the transverse coordinate

and k is the wavenumber of the wave with no refractive index fluctuations.

The random nature of the fields is conveniently described by statistical moments

evaluated in the transverse plane located at distance R. Ensemble averages of random vari-

ables are denoted by <> The first moment

r,(tR) = <E(t.R)> (1)

or average of the field and the second moment

Pz(tI.te.R) = <EP(21.R)t (lkR)> (2)

or mutual coherence function are well understood (Tatarskiu, 1971]. However. there are few

analytic results for the fourth moment

P4(1 1t 6t..2 4 .R) = <E(t1 .R)A' (1.R)E(13.R)f (14.R)> (3)

Previous theoretical work concentrated on plane-wave and point-source geometry. We

: .,'i.-',- ,- :- -- . .. ,.:, ,'-.' ...- " . - .- .. .. .. - .-.-.- ,-.. .. . .Septem ber 9
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- present three main results for arbitrary source distribution.

A series expression for the fourth moment is derived as an expansion of the Green's func-

tion for the fourth moment, thus avoiding the difficulties associated with the source distribu-

tion. For the thin-screen problem, the expansion quantity is a combination of phase structure

functions. For the extended random media, the expansion quantity is an analogous combina-

tion of phase structure function densities. The Green's function is expressed as a multiple

path integral. The resulting series of path integrals is evaluated with a useful identity.

Our second result is the generation of two series for the intensity correlation or intensity

spectrum. The fourth moment r 4(tI 1 .* ,,*4 ,R) has the obvious symmetries that it is

unchanged by interchanging 11 and i% or by interchanging 92 and 14. Each term of the series

expansion does not share the symmetry of the entire expression. Thus two separate series

are obtained by invoking symmetry. In principle, either series could be summed to give r4. We

demonstrate, however, that it is better to consider both series in order to describe the fourth

moment with the fewest number of terms. This assertion is demonstrated for the second

moment of intensity or intensity correlation, C(tj,*2,R), hich is a special case of the fourth

moment, i.e.

c(,.A2.R) = <J(tR)J(A2.R)> r4(tIj,,..a) = r1(74.ttg,t) (4)

Note that the symmetry of the fourth moment has been explicitly indicated. A clear presenta-

tion of the behavior of the intensity correlation series obtained from the fourth moment

expansion requires the introduction of a spatial spectrum of intensity fluctuations for a spa-

tially nonstationary random process. We adopt the definition

I(ACR) C(A,PR)e-'' do (5)
* ~(21r) -

where

A= (, + 1) =6 1- te (6)

(Note the free format of the argument list of functions). The spectrum has the property

f 4(.4.R) d4= C(A0,R) <(A.R)2> (7)

It should be noted that the spatial spectrum may depend on the centroid A.

• -- . . .., .. .... *'>. . .*.*September 9



3

Since there are two series for the intensity correlation there are also two series for the

intensity spectrum. The leading terms of one series for #(,(44,R) describe the small 4

behavior while the other series is valid at high 4. The rate of convergence of each series pro-

vides a criterion for merging the two results to produce a complete expression for the inten-

sity spectrum. In general, an analogous treatment of the intensity correlation series is not

possible since the leading terms of both series do not converge to the variance as the spatial

separation approaches zero.

Our third result is the demonstration of the equivalence of path integral and moment-

equation methods. Early theoretical work on WPRM concentrated on geometrical optics and

the method of small perturbations [Barabanenkov. 1971; Tatarskii, 1971]. These two

approaches were limited to weak scattering conditions. This restriction was removed with the

introduction of differential equations for the moments of the feld [Prokhorov 1975]. Func-

tional techniques of high energy physics (path integrals and operator methods) provided

another point of view to WPRM (Klyatskin, 1973; Dashen, 1979]. The moment equation method

and functional techniques are equivalent [Codona et al. 1965] and must generate identical

results when expansions are performed in the same quantity. This equivalence is demon-

strated by deriving the same fourth moment series expression using moment-equation

methods.

The thin-screen case is considered in section 2. The second and fourth moment are

analyzed with Green's function techniques and the behavior of the intensity correlation is

investigated. The same analysis for the extended medium case is presented in section 3. Here

we use the patb integral representation of the Green's function. Identical results for the

fourth moment are derived with moment equation methods in section 4. The main results of

the paper are summarized in section 5.

Set. . 9..." °. *
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2. GREEN M FUN(ON APPROACH TO THE THIN 3CFZW PROOM

2.1 IntroducUon

One of the first WPRM problems considered was the propagation of plane waves through a

random phase screen (Mercier, 1962; Salpeter, 1967; Bramley. 1967; Gochelashvily and

Shishov, 1971, 1972. 1975; Rumsey, 1975; Rino, 1979a, b; Uscinski and Macaskill. 1983a. b].

The propagation of radio waves through the ionosphere and the solar wind are two applica-

tions of this model. The theory of scintillation from a point source viewed through a random M

phase screen has been investigated by Lee [1977]. The case of a Gaussian beam focussed on

the observation plane has been considered by Cochelashvily [1974]. Previous work concen-

trated on plane-wave and point-source geometries. We analyze the more general problem of

an arbitrary beam incident on a phase screen using Green's function methods. The following

analysis is presented in a fashion that permits a clear extension to the more complex problem

of wave propagation in extended random media. We review Green's function methods with a

discussion of the second moment. A series expression for the fourth moment is presented as

an expansion of the Green's function for the fourth moment. The behavior of the resulting

series for the intensity correlation is then discussed.

Consider the scalar wave field, E(mz). incident on a thin random phase screen situated

at the plane z=O. The field. E(r.O + ). emerging from this screen is given by

E(r.O +) =:E( t,0)e ' e ) (8)

where E(2!.O) is the field just before the interface of the screen and the phase fluctuations are

0t

9(r) = kfn (r.z)dz (9)
0

where n(fz) is the random fluctuations in refractive index. Assume 0(2!) is a zero mean

Gaussian random variable with homogeneous statistics and correlation function

C.(I) = < ( + I)> = d (10)
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5

where 00(4) is the spectrum of phase fluctuations. The structure function of phase fluctua-

Uons. Do(#), is defined by

o(#) = <9o(1) - 0(1 p)]'> = 2(C(o) - o(O)] = 2Pt -cos(4.)1]9(4) d4 (i)

For narrow angular scattering the scalar field satisfies the parabolic wave equation

NA aE + VE=0 (12)j

The solution of the field at a distance R from the screen is (Mercier. 1962)

E(LR) = fE(fo)G(tr,R) dr (13)

where the Green's function is

G( .R) = eCs (t)Gf (x-.R) (14)

with the free space Green's function

GI,(t.R)= k explk ( 1 t'r)2 (15)

2 Green'-Fnction Approach to the Second Moment

Since the random fields have a Green's function solution, the moments of the field also

have a Green's function representation. Consider the second moment of the field or mutual

coherence function. 'g(Ij,!k..R), given by

P2(t,.e12.) = <E(t2,R)e (e.R)> = ffPa(r,.r.o)<cG(t,;r,.R)d (ter2,.R)> dr, dr, (18)

The Green's function for the second moment is identified as the expression inside the <>, i.e.

G(k; , R) = G (t,; t,R)<exp[i(§(r,) - 6(t,))> (17)

where

q (ti;t1R)G" (tg;rg.R) = (k) exp[ R(1t - 1 ' -(, - )'j] (18)

. . , ,'._ .- . . .. .... *~, ~~ *..* ~September 9



Is the free space Green's function for the second moment. Here. rt and . denote the set of r

and I coordinates respectively. The expectation over the random phase is performed with the

identity

>-e (19)

which is valid for zero mean Gaussian random variables. The Green's function for the second

moment is then

Gi( ;r,.R) = G4 (*i-;1,R)exp[ -'-D(r, - r,) (20)

2.3 Green's-function Approach to the Fourth Moment

Previous work on the fourth moment has concentrated on plane-wave conditions

[Zavorotnyi. 1979a]. We address the full fourth moment with an arbitrary source distribution.

Following the previous analysis of the second moment, the Green's function for the fourth

moment is given by

G4o(;r,.R), G4 (I,;kt.R) (21)

exp[ - L[D.(t' - 2!) + D9(%5 - r4) + D(t - r.) + Do(.5 - r 3 ) - Do(r 2 - r4) -D,(r 1 - r3)11

where G (I;ko,R) is the free space Green's function for the fourth moment. It is convenient

to apply the unitary coordinate transformation (Rumsey. 1975]

2a =It +t+ 14  2I 1 =i+ +-+S

2#t= 11 + le - 3- 4 224 = d +t--

21= t -*I,-13+ 14 213= a-i-+

28=I,-2Z+t,-t, 2t,4a-+.- (22)

The set (d', '.8'. will denote the same transformation on the coordinate set (fr.t! ,r3r4).

The Green's function for the fourth moment then becomes

September 9
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G=((tqt.R) (23)

exp 8 ) Do(,-5) D.(4 8') 4o(-')-.D , )-Do -,)1

where

G( ,r ,.R) = V -[( J -jm ,)o - ( r-2')" + (0- t')2- ( r4-')21
(2ffR)4 1XI2 RLt 34

(2yrR)' ex4 [(a-a).l3-')+ (-k).(1-r)j (24)

is the free space Green's function for the fourth moment. This expression is intractable, both

analytically and numerically. Marians [1975], numerically calculated the intensity spectrum

of plane-waves incident on a two-dimensional phase screen.

The plane-wave case was considered by Zavorotnyi et al [1977]. They noted that a combi-

nation of structure functions was small in the important regions of integration. A series

expression was then obtained as a Taylor series expansion. For the general case, we identify

that same expansion quantity as

S=- [D&(,+ 8'),+ Do( - So) - De(i' , r) - Do(P- -,)] (25)

= 2f $g(e)[cos(S'. 9) - cos(f .,4)]et " d 9

We will investigate the behavior of Q for a structure function that is power law above the

inner scale 1. The exponent in (23) is large unless two of the first four structure functions are

small. (The other two can nearly cancel the last two structure functions). The only way the

exponent can be small. while allowing the cancellations, is for

8' =O(so) and ' = O(so) or 7' = O(so) (26)

where So is the field correlation distance defined by Do(sC) = 1. The remaining variable (#' or

4', is typically of order of the scattering disk

Rt (27)z(k



where 9o is the width of the angular spectrum. When the inner scale is larger than W, there Is

little scintillation. Therefore, we consider the case so<< N, IQ<< W, : O(so),and : O(OV). A

'," Taylor series expansion about ' reduces Q to

'=,. = ('s+ 9').()(28)

For a power-law structure function

D90) = (A,/s Q)P (29)

Q becomes

"=P(& - (8 +-  ) LPo(A -P (30)
2 SO2 s0 W

* On the other hand. the other terms in the exponent are O(De(so)) = 0(1), which was the condi-

" tion which caused I' and S' to be order so. Thus. if so< W. a Taylor series in Q is appropriate.

but a Taylor series in the entire exponent requires many more terms.

The other possibility. #' = O(so), and J' 0(W) requires an expansion in another variable.

Q, obtained from Q by interchanging P' with -Y. This alternate expansion is the fundamental

reason that two different series are required.

We now return to the Taylor series expansion in Q. with the result

G(Z;f'.R) = Ga(t ;t',;z) G((Z;,,R)exp[ - -- [D,(7 + ') + D.(7' - ')J] (31)

R=0 2

I1+xf dt, ..dfexplittJ .kP I j:141(t,)cos(3.,)0 - cos(JP.ti)J

This series should converge quickly when the quantity Q is small over the important region of

integration. Note that the symmetry of the full fourth moment expression (23) does not hold

for each term of the expansion. The equivalent moment-equation derivation is presented in

section 4.1.

The first term of (31) reduces to

* C(t;',f.R) Gil*;;rf.R)e-[Dr 1 -t. Deer,-)J = G 3(, 1. 1.trir.R)G(t 3.t, , r,4 ,R) (32)

,, .. . . September 9
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Thus. for spatially coherent sources, the first term of the fourth moment is a product of two

second moments,. i.e.

r4.(1,,,,.,,R) = r 2(tjteR)rg(U..,R) (33)

The next term of the Green's function expansion is

G(,(Z;r,R) =2'.r,.R)exp[ -- -[D.(1Y + 3') + D,(' - 8')J (34)

f'e(t)[cos(8'.t) - cos(e'. )]eP" I t

These two terms contain the useful first-order description of the fourth moment. The rate of

convergence of the series is determined by the higher order terms. For the plane-wave case,

the fourth-moment expressions generated from (33) and (34) are identical to the asymptotic

results of Zavorotnyi [1979a Eq (7)].

2.4 Intensity Correlationi

There are few measurements of the full fourth moment of WPRM [Gurvich et al, 1978.

1979a]. However, the intensity correlation, a special case of the fourth moment, is commonly

observed. We will now demonstrate that our fourth-moment series (31) generates two different

expressions for the intensity correlation (4). one valid at low spatial frequency, the other valid

at high spatial frequency.

The low frequency version of the intensity correlation is obtained from the fourth

moment (3) by setting it = ig and to = * 4 or by setting 2=0 and 7 0. The n=O term produces

CY (&.R)= 4 ) r,(a'. .1.'.)exp( -,i-[(a -. ). -. (I -+.7]] (35)
(2rR).

exp[ - L(D.(' + 4') + D,(j'- 3')]] dd' dit d' dJ'

For spatially coherent sources

cV(d..R) = '(d+ a R)><1(0_ ~j R)>=<1(1j.z )><I(t3.s)> (36)

---- ... .." . . . . .. Septem ber O



or

* jt (j 4.R) < I1~c(A+ #-R>]A ) -01 d# 37

which normally describes the smallest spectral scale of the process. Indeed, for plane-wave

conditions #j"(f,4,R) = <1>28(4) since the average intensity. <1>, is a constant.

The corresponding terms for n=1 may be written as

!4
- 2 (k.,R) (2 ,)' f(a',,r,',)exp- [( -a'+(- '),*t] (38)

, exp -- [De(' +') De(J'- 3')] e(A)[cos(8'.t)-cos('.t )]e ' d' d#' d-?" di? d

and

S2( R)(..- -R (39)

This term describes the refractive focussing by irregularities of the size of the scattering disk

(Rickett et al, 1984). For the case of plane waves, (39) reduces to the familiar result

R R
*jI0(,4.R) 44'(q)exp[ - D9(qT)]sin2[9 2 a ] (40)

which also describes the low q behavior of #(1AR). The Born, or weak-scattering approxima-

tion is obtained by ignoring the exponential term of (40). Similarly, the Born approximation

for the general case is obtained from (39) by ignoring the last exponential term.

The high frequency version of the intensity correlation is obtained from the fourth

moment (3) by setting t = 24 and k = ils or by setting 8 0 and = 0. The n=0 term produces

Cy (d. 7,R) =(2crR)4 fP(a r,38.o)exp Ot al -8 + (I -'r)fr (41)

exp- -L(D.~f + d)+ Do(7r - I']da' dit d7 dJ' df

'. ~ ..
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For spatially coherent sources

CV (tj.*g.R) = ,t..~i(tpl.R.) (42)

This expression is the high frequency approximation, i.e. the intensity correlation is the

square of the mutual coherence function, and may also be derived by assuming that the com-

plex electric fields are zero mean Gaussian random variables.

The n= 1 term reduces to

( , R ) : ())-- -- ( 4 3 )

, ~~exp1 - -[De(t' + 8') + D.(i' -8')]1e()[cos(&.tJ) -cos(1'. )]eip'' Cd' dia' di" dd' dit

and

2__r 4 (k== - k--e(-a'. ]e (44)
(2 R2 J, kR~ /

expj-[D.(t' + 8') + D.(i ' - )]Jde(i)[cos(8 .e) - cos(r .t)] d' dL" d8' de

Rickett et al [1984] argue that the physical mechanism for this term is the modulation of the

small scale structure (42) by the large scale refractive process (38).

We have shown how the fourth-moment series generates two expressions for the intensity

correlation: one (8=0.1 = 0) useful at low spatial frequencies, and the other ( , = 0, 0) useful

at high spatial frequencies. The region of validity depends on the statistics of the phase

fluctuations and the initial source distribution. The case of plane waves incident on a random

phase screen with a power-law spectrum has been investigated by Gochelashvily and Shishov

[1975). Their calculations of the first few terms of the intensity spectrum [Figure 1] imply the

two series converge quickly when the quantity Q is small over the important region of integra-

tion. The rate of convergence is difficult to determine a priori; the contribution to the inten-

sity spectrum from the higher terms is the best indication of convergence. A fMite number of

terms from the two series can be merged by a weighted sum based on this rate of

S -" - -. " " " ' -" - --- .. .' September 9.. ..-. p J " " " " + p'e' -' " * 'p =. p= ,* p+4. " . " -4' ,= . ' " " "44.. * . * . '. -. - . * . . . - . . . . *



12

*' convergence. In strong scattering conditions, these two series merge quickly and only a few

terms are required to describe the complete spectrum. The intensity correlation series is

more difficult to interpret since the errors of the expansion accumulate in the region of small

spacing but in the spectral domain, these errors appear in the central regions of the spec-

trum [cf Figure 1].

3. PATH INTEGRAL TECHNIQUES FOR E)IXMDKD RANDOM MKDIA

3.1 Introduction

We now consider the more complex problem of wave propagation in a random media that

is locally homogeneous with statistics that vary slowly in the direction of propagation. Laser

propagation in the atmosphere, radio propagation through the interstellar medium, and

sound propagation through the ocean with no deterministic background are common exam-

ples of this phenomena. Many theoretical methods have been applied to these problems.

Moment-equation methods are reviewed by Prokhorov et al [1975). Recently, Macaskill [1983]

and Frankenthal et al [1984] have applied the two-scale embedding procedure (Frankenthal et

al [1982], Beran et al [1982]) to produce a solution for the fourth moment. The application of

path integral techniques to problems of wave propagation in random media was introduced by

Klyatskin and Tatarskii [1970], Zavorotnyi et al [19771 and Dashen [19791. Path integral

methods have been successfully applied to the difficult problem of WPRM for anisotropic. inho-

mogeneous medium with deterministic background of refractive index [FlattL et al, 1979]. A

functional operator form of the path integral was used by Tatarskii and Zavorotnyi [19801, to

extend thin-screen analysis to the problem of wave propagation in extended random media

for the plane-wave case. We use the path integral representation of the Green's function to

illustrate this connection because one obtains a clear presentation of the role of the source

distribution. We believe that the operator formalism is equivalent to the path integral methoT

and produces the same results.

The path integral technique is introduced by a review of the second-moment derivation.

The reduction of path integrals to familiar Reimann integrals is performed by a useful identity

... .. September 9
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(cf (62)]. Using this Identity. we present a series expression for the fourth moment that is

analogous to the thin-screen results of section 2.2. The behavior of the resulting correlation

series is then discussed.

For narrow angular scattering, the scalar field satisfies the parabolic wave equation

OE6
2ik- +VE+2kan(tz)E =0 (45)

where n(tz) denotes the refractive index fluctuations. We define the correlation of refractive

index fluctuations. Bn(A.t.z), as

B.CV, z ) =< (o,),.( ,.z + t )> (46) ==

The path integral formulation for the Green's function was developed by Feynman [1948], and

may be written as

G~r;*,R)= f Dt(z)exp i52 [?(z))2dz -ikfn[t(z),z ldz (47)"
0o0

where Dt(z) denotes the infinite dimensional integration over all possible paths, t(z), con-

necting the points (t.0) and (I.R) and ?(z) dt The most important paths are those neardz,
the geometrical path from (ro) to (t.R). given by

)=r(1- -)+1- (48)

Transformations of these geometrical paths will be denoted with the subscript G.

If there are no refractive index fluctuations, the Green's function becomes the free space

Green's function.

(3 (tr,R) f D#(z)exp i f[z)] 2dz1 = kexp (t- t)2 (49)

b 3.2 Second Moment by Path Integral Techniques

The Green's function for the moments of the field are easily expressed in terms of the

path integral. The Green's function for the first and second moment were derived by Dashen

,.- - -- ,. . -. .. . .. September 9
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[1979]. These results were obtained under the Markov approximation (ZavorotnyL 1978]. We

review the derivation for the Green's function for the second moment, which is given by

*(*,1;r 1,t 2 ,R) <C(t,;t',.R)d (tg;r,,R)> (50)

-ff Df1(z ) DI'g.(z )exp( i4([')] -[(z))dz J<expj -ikf[n (fi(wz)-n(P2(z).z]d>

Applying (19) and the Markov approximation results in

G2(=,;r,,R) 2 ff D, 1 (z) Dt 2(z) (51)
(21TR) 2

k R R

exp ()1 2)ciz - .- fdif,(z) -f22- Id)z
0~ 2 0

and the phase structure function density is given by

d (t,z)= 2zf B.(o, ,z) )- B. (Pl, t,.)]dt

- 4 frk2fl I - cos(O. 4)1 (.q, = .,z) d 4 (52)

where

f, (2.R )fB(tz.R)expII -i(..+ zga)] di dz (53)

is the refractive index spectrum. Change path variables to the centroid and diterence coordi-

nates

A(= ) + "[, NOr==] (54)
2

P ) = MO t2-,(2) (55)

The double path integral can be evaluated by expressing the paths as deviations from the two

geometrical paths defined by (48). i.e.

A,(z )=A(z )-A(z) (56)

- *.% '....', -- *-... ........--...- . ..,-.... Septem ber 9
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where

A(s) =AO( - - .(r, +r)(- -L + ) - (58)

and

Pa(z) =p(O)(i - +)+(R) -= (r, -r,)(- - +(is - te) (59)

Then A1(0) P(R) = P,(0) =P(R) = 0 and the second-moment Green's function becomes

G2(.;jR =expj FA-[((I - ij)2 - r.- *2)]ff DA1 (z) D~O Az)

R j
exp f-[(z-,)dz - - )A f +DP(z ).z (60)

Integrating the first path term in the exponential by parts and substituting the free space

Green's function results in

G,(*,:r,.R) = (21R) cf (*,;rj,.e"(&,rzR)f DA,(z) DP,(z)

RR)

This path integral is evaluated with the identity

ff DA(z) Dp(g)Ff(z)]exp ifp(z). .(z) -S(z)]d : (k2) F[j(z)] (62)

where a(z) is the solution of J(z)= (z) that satisfies the appropriate boundary conditions.

Identity (62) reduces (61) to

G(i.;rt.R) = Gf (l;r1 ,R)G, (.;r2.R)exp -Lf d (z ).z dl (63)

and J(z) 0 is the solution of 1(a) 0, that satisfies the required boundary conditions.

_ '-" -. . ' '. ... .. . .,. 2. . . , .. . .... • . . . . .m be
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33 Fourth Moment by Path Integral Techniques

Using the path-integral technique, we derive a series expression for the fourth moment in

- a manner analogous to the thin-screen derivation. The Green's function for the fourth

moment is given by the multiple path integral

-. G,(2 G r,.R) = <G(t1;r , .R)d (,.r,.R)G( 6r 3 R)d (*4,r.R)> = f Dr. DIP, Dr. Dr.

""exp ift' [ :-:dJe ifnCs)_~t.)+r~sz -(,z]z>(4

R 4R

If f[n (C.z) -n(z.z) + n(C,z) -nQ( 4.z)]dz is a zero mean Gaussian random variable (19) and
0

the Markov approximation is valid, the last term of (64) becomes

R

exp[ -- f[d(f, -2 .z)+ d(f3- 4.z)+d(, -14 .z)+ d(2 -fC.z)d( 4.) - d( , - ,.z)]dz1.

Change path variables to

"- (z)- = ,(z) + fa(z)- + f(z)-+ ,(z) 2PI(z) = d(z) + P(z)-+ (z)- + (z)

2te| () = ,(, ) - f,(z )- f(z ) + f,(z ) 2iP3(,) = d z(z) )- J(,) +

28(z ) =e lz) )- t(z ) + f3(z )- f,(,) 2r,(z ) = d(g) )- P(, + J(, 8-(z (65)

Following the second moment derivation, we express the paths as deviations from the

transformed geometrical paths. i.e.

a1(,)=a(z)-a0 (z) (68)

* 1 ,(' ):fl()-7c(x)

where

P (67)

- - -- .- .. ..... .. .-. ,-.. - . .. . . . . .Septem ber 9
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In order to simplify the large expressions, ( ',8Jwill replace (d(0).P(0)4(O),3(O)) and

Swill replace (aR$R,()8RJThen.

G^ .r.R 4  (,r.f Dd ol1 8exp i.1(A,,Ia, + (68)

expi-' 1 f~d(11 +81 + G(2)+8G(Z ).z) +d(7? -81 + G-)8~)Z+dp+ 1+ (u)+3c(z ).z)

+ d(#1-81 +AGW-z)4(Z).Z) -d(fi 1 +1(Z )+IO(Z),z) -d (#1 -11 + #C(x)-c(Z ).z )jdzJ

Substituting (integration by parts)

R R
i=( I 1.J~Z ikf(d, I + #.I j)dz (69)

00

and performing the integration over the paths d, and 81 using (62) results in

expi -f~d(?, +IC(Z)+8G(Z ),Z) 4d('7, 4'7G(Z)-dc(z ),z)+4 ck,+ c(z )+SG(z ),Z) (70)

+ d(#, + #G(Z)-JG(9),z) -d(ol +1 +, PC(--)+'?G(X),) -d(#, -11 +Ac(z)-1o(E),s)))daJ

Note that (70) is similar to (23) of the thin-screen derivation. The parameter t has been added

to label the quantity

~0

=42kffk . (4, = 0.. )exp~l.[ I, + POW11JJCOSW(AGW(u) - coa (4[tj 4 7c(')))J d~ da (71)

- *:- ~ . -:. *.*>A>~..,,. *Sqotemnber 9



as the analogous expansion quantity to the thin screen derivation. For a point source. this

expression is small In the contributing regions of path space [Dashen. 1979]. Performing the

Taylor series in Q results in

* ~exP[ +fd~,z jo ?( )+30(z).z) + djz)+ 1G(Z )-3C(Z ).Z )]iZ

R R (4n 2r

lexp[ -ikfpl ~( ylkx)d enf d .fdz,,f d4. .. f4

0Jlk 1=1

O0,Zj)[COS(4 . j)- COS( ((lZ,) + tG(zj)))]J (72)

Applying identity (62) yields

G4k;t.)G(;.R)x( X[-!fI~d(IGZ)c(z -Z+d(GZ-GZ-) +

f(4nk e)Rc1 .. f dfdl- d4 (73)

exj2Gzj-jL d~t '-h(z :z) + l(z )+Jo(z).z) +d A Lh(:z -.z.) + dczz
*~ jm i 0 in k m

1f'1 9(4.q = .j)[cos(Ok. 8o(zj)) -cos(4j.(t k 2 G4z1,)))Ijt

where h (z; z) is the solution of

that is

h3~j l(--1 >21 (75)

* *~: * *September 9
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The free space Green's function for the fourth moment. Cf (1:4;.R). is given by (24). The

terms of the series are identified as the coefficients of the parameter ef. This construction

will be used to prove the equivalence of the path-integral series to the iterated moment-

equation series of section 4.2

The first term of (73)

- Jf [i(tf,-(i).i) * d(g0 (3)-*5 (f )a)]d

(; . ) = G((Z;t',.R)e " (76)

= cQzt,, ; ',,.r2, e) (*3,14,r4R,,,)

is analogous to the thin-screen result (32).

The n= 1 term is more complex.
R,

S47k ((t ;r,.R)ff#,(4.q. = Oz ,)[cos(4. 80(z ,)) -cos(. [ -h(z .z ,) + 0 (Z ,)])]
0 --

e" 21exp L d--(z;zI)+IG(Z )+u0(Z ),z )+d( k ;z 1)+I((z )-8c(z ),zz 1~z(77)

The higher order terms of the fourth-moment Green's function are obtained from (73)

but become more intractable. However. the first order description of the fourth moment is

given by the leading terms of the series expansion. We now compare these expressions to pre-

vious results for the fourth moment. The point-source result is obtained from the Green's

function by setting rt to zero. This reproduces the iterated series of Shishov [1972 Eq (13)]

that was derived using moment-equation methods in a spherical coordinate system. Appling

the plane-wave initial condition generates the series expression of Shishov [1971 Eq (20)].

Gurvich et al (1979b] proved this series was convergent. It can be shown that the point-

source series is also convergent. Applying the plane-wave case to (77) with d = 0 and 8 =0.

reproduces the strong scattering results of Fante (1975 Eq (BI)] and Zavorotnyi [1979b Eq

(3)].
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3.4 Intenuity Correlation

-q Furutsu (19721 derived expressions for the intensity correlation from a Gaussian beam

propagating in a random medium with a square-law structure function. This case describes

random wander of a beam (Wandzura, 1980]. Weak scattering results for intensity correlation

from a Gaussian beam are presented by Ishimaru [1969]. We now consider the intensity

correlation following the thin screen analysis of section 2.3.

The fourth-moment series generates two expressions for the intensity correlation; one is

obtained by setting 8 = 0 and I = 0 (the low spatial frequency region) and the other by setting

= 0 and = 0 (the high spatial frequency region). The resulting expressions for the n=O term

are

Cli (d.R) V T4 r4(a$.7,-.8.O)exp( -iL-[(d -d'). -8+ (~-).'] (78)
(2iTR R

exp -f[ d((I' + 8')(1 - -L).z)+ d(( ')(1 - -).z)ldz dd' dp]" d- d8'"

and

CV. (a,7,R)= k4TR* fr4 (a',$,y,.',)exp( -i -[(a -a').8' +(7 -7').']] (79
CY (AI.R)(79)

(2ffR)

.. , z )+ =da' d#' T' d8'ri x - [(Cr +a')( - -)+d((-'-)')(- j-+ 4.,)]dzJrar= 7 i

For spatially (oherent sources, these expressions reduce to

22

and

C (1j,2.R) rg,,tiiR)r (it., ) (81)

which are analogous to the thin-screen results (36) and (42).

The corresponding expressions for the n= 1 term are given by

1 C(a.0,R) =Ik .. 8,O)e t R e ID 1,
(2ffR)4 J,L,4 Na

- - . . - . - - .*-,,.. *.. ,, - -.- . .~. : .September 9
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exp1 R fd(-h(x.sa) + ( '8)(1- -).s)+ d(flh(spr~ -3)( - -!RS)d
I " 1

[cos(4-8'(1- )cs4(~ix)- ( - !-)))J dad' ddd8' dtdzI (82)

and

4ee ..- , .

(2,rR)4 a -

Icos~.S(1 ~ ,, ~ +1'( - -~'+ ~ d dfr 'd? d2 d4 dz (83)

The appropriate Fourier transform (cf (5)) produces the corresponding expressions for the

intensity spectrum. The Born approximation is secured from (82) by ignoring the last

exponential term.

The low-frequency series for the intensity spectrum has been investigated for a power-law

spectrum of refractive index fluctuations and plane-wave [Gochelashvily and Shisbov. 1971.

1974] and point-source [Gochelashvily et al. 1974] geometries. The qualitative behavior of the

intensity spectrum is similar to the thin screen result (Figure 1]. In weak scattering, the first

two terms describe the complete intensity spectrum. In strong scattering the intensity spec-

trum is characterized by two components. The low frequency region, *fl(4.R), is due to

refractive focussing by irregularities of the size of the scattering disk (Rickett et al. 1984).

The high frequency behavior was first determined by summing the low-frequency series, which

yields the high frequency approximation 4'fI(,R). The derivation presented here generates

this same result plus higher correction terms without performing a complicated summation.

As in the thin screen case, the physical mechanism for the first correction term (83) is the

modulation of the small scale structure (81) by the large scale refractive process (82).

Uscinski [1982] derived an approximate expression for the intensity spectrum for the

case of plane waves by summing a perturbation series for the fourth moment equation.

.........:- .%-'.:.:-.'.-t..-...-... ....-..... .. >. .September 9
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Macuiskill [1983] derived the same result using the two-scale expansion [Beran et a1, 1982). In

our notation, their expression for the intensity spectrum is

,0(, R)= exp f d(tz) + d(4-(R -z),z)

+..._ci+,+ +-(R-z),z)- d(,_ _-(R-z).,)]dze_. dit (,,4)

The extreme low and high spatial frequency behavior is identical to that obtained from (82)

and (81). However, the predictions for the intermediate frequency region are different. More

theoretical calculations are required in order to determine the accuracy of the two methods.

The intensity correlation from a point source embedded in a random medium with irre-

gularities that are constant in one transverse dimension is obtained from the point-source

result by the substitution 4n(4) = f.(q,)6(q.). The leading order terms of the intensity corre-

lation series are

R

00f (O.R) =<1>exp[ - f d(,--)dz] (85)

i, (p,),,_, 2k
JR

1exp-fd[ h(z;z ).z]dz +ip.-- dq dzl (86)

and

R-

exp -fd[P-- + [-h(z;z),zldz + pq -- dq dz, (87)

Ignoring the exponential term of (86) reproduces the weak scattering (Rytov approximation)

result of Tur and Beran [ 1983].

Fante (1983] investigated the effect of the inner scale of turbulence on scintillation for

the case of strong scattering of plane waves by calculating the expression C&I(PR). The

.- r

:'--.--,-..-..- - . . . . . . . September 9
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contribution of this term to the total Intensity variance is appreciable over a wide range of

parameter space. Therefore, higher terms are required for an accurate description of the

intensity correlation.

4. MOMENT EQUATION APPROACH

4. 1 Moment Equation Method for the Thin Screen

We now derive the fourth-moment result (23), using the moment-equation method. This

method is based on partial differential equations for the transverse moments that are derived

from the parabolic equation for the random fields. These differential equations may then be

solved by transform methods [Rumsey, 1975] and the method of characteristics (Kiang and

Liu, 1982]. There are, in general, many transforms that will simplify the problem. We choose

one [Shishov, 1971] that permits an analogous derivation for the fourth moment of waves pro-

pagating through extended random media.

The fourth moment satisfies the differential equation

-- (*A, )-- - - vt + vl - Y))P,(t,.t,) (88)

with initial condition

r4i,,,,o+ ) -- T4(kI ,t,., 4 , O)<e'" - g OI=r 4 tI£,)

exp[ -- [D.(j, - tz) + Do(t -t) + D.(1, - *4) + D9(12 -L1) -D9(2 - t,) - D.(t, -ft)]](89)

Change variables to the coordinate system (22). Then

-14vv,)r,(a .) (90)

This equation is solved in the Fourier transform domain

-tta.a R ) dd do (91)

which transforms (90) to

-.-.-. -.......- •....... September 9
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(2)

Changing variables to

@v~ s k- z =kl-qz ,. =

" "() = i 4r z= r
k

transforms (92) to

Or, Q (94)

Since M is independent of r, the solution in the original variables is

m t /c',.-'" ~M(kJ,,8,R) = U(441 b -4E-8----'- f--.0 +-) (95)

The fourth moment is the inverse Fourier transform of this expression. i.e.

'lr,(a.,48,R) = .- -fr(a,,],.1- /R, .- R/ ko)e'Et-(a-a.) + 4--)' (96)

exp -[Do(' + ') + D(J' - ')+ Do(A + 3') ++ Do( - ')-De(A' +-Y)-D o (#'-t)] dd' d dd

The change of variables ;Y='z-iR/k and '=3-iR/k produces the Green's function result.

(23). The moment- equation method is based on the formulation of the free space Green's

function in the Fourier transform domain. This transform technique will now be applied to the

more difficult problem of wave propagation in an extended random medium.

4.2 Moment Equation Method for Extended Random Media

The moment-equation method was a major contribution to the theory of wave propaga-

tion in extended random media (Prokhorov eL al 1975, Tatarskii, 1971]. Ur*ng moment-

equation methods, a series expression for the fourth moment was derived for plane-wave

[Shishov. 1971] and point-source [Shishov. 1972] conditions. For an arbitrary source

-.. S. September 9* ,-%*



distribution, we present an analogous expression that is identical to the path integral results

of section 3.3. thus demonstrating the equivalence of the two methods.

The transverse moments of the electric field satisfy differential equations [de Wolf, 1967:

Brown. 1967; Shishov, 1968; Dolin, 1968; Chernov, 1969; Tatarskii, 1969; Lee, 1974]. We follow

the techniques of Shishov (1971] to solve the differential equation for the fourth moment

Or4 _~

aw , 2t [v2-vI+v1-v2r 4+ vr=o (97)

where

2V=: d(l, -A.z) + d(tl - *4.z ) + d(12 -13,z ) + d(J3 - 14,z ) -d(i, - 2lz ) -d(*ez -*4.z ) (98)

In the coordinate system of (22). the fourth moment satisfies

aP4 - i [V,'VS+ V#.V ]r+ Vr4=0 (99)

with

2V=d(+8,R) +4d('-8,R) + E[d( + 8.R) + d($-8.R) -d( +t.R)-ci(P-.R) (100)

where the parameter c identifies

S = L[doi+ 8,z) + d( -8,z) -d(#l+ .z) -dL(# -. z)] (101)

as the same combination of structure-function densities we used in the path-integral expan-

sion variable Q of (71). The Fourier transform (91) converts (99) to the integral equation

am + L.S VM Lt+ 8c ~ 8] G(tC4,,.z) (102)

where G is the convolution of M with the transform of S, Le.

G(,,,,~z) = 4rkf¢.(%,z)[cosO. -it) -cos( .- ,1)M(R,1- 4j=,,.z)d (103)

The change of variables (93) transforms (102) to

am- +  () (r + d(t(r) - J(r),r)]M tG( ,%(r), (r).r) (104)
Or a

* * -:*:.:-: eptember 9.
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which is analogous to (94) of the thin screen derivation. This is an ordinary differential

equation in r, with solution

SMCZ%o,) MC.. ! O)exp [ - )]dz

k'k ~~~~..f~d(j(z) +8(z).z)+ tz -8zz]dI0
+ f exp -L ((z).z)+-(?(z)-8(z).:)]dzJG(t.%.(x).8Cz).x ) dr1  (105)

Changing variables back to 8,t.R results in

M(it,44,1.R) = M(.it41 3.. 3.0)exp - [d( + +82,z) + d(2- 2 ,z )]dz
2.0

+te exp1  Lf[d(1 2 + 8-)+ d(1 2 - 82,z )]dzjG(R.0 1 .8i.z 0) 1~ (106)

where

This expression can be written as the integral equation

M( t7,R) = Z(t4,..R)

0 - -rn-

where

and

-- ,, . . - . -... September 9
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K.(.A~, '2.,8',~ e, ) = 4.nk$ .( 1- 4,z 0)8(*' - 8,)8(f' -?,) (110t)

expi -- fd (12 8 2z) +d(1 2 - 82.z)biz1048'Os[. -0) - cos(7. (4- 41

The formal solution is

n=O

where

=ff ff(R .i1d'Rz ) ) d4 d-Y dd' dzl12

and M0(Z. .R)=Z(iC'.&R). This solution is a power series in e. The path-integral expan-

sion (73) is also a power series in the same parameter t. Since this problem has a unique solu-

tion and since the path-integral and moment equation are equivalent representations (Codona

et al, 1985). the two series are equal, term by term. We will show this equivalence explicitly for

the n=O term. The fourth moment is given by the inverse transform of (110). i.e.

14(,j..) fr' ~k.~~ Aa~(- (114)(2ir)4  k k

20l- [(8-(i+t)(R -z)/ kz) +d (J-(-t)(R -z)/ k z )ld d'pi dt

The change of variables -?=-R/k and 8'=8-iR/k produces the same result obtained from

the n=O term, (76). of the path-integral derivation. Unfortunately. for higher order terms, the

equality of the two expansions is less obvious since the functional form of the two series is

different: the moment equation series is essentially a multiple convolution, while the path

integral result is not. However, with careful algebraic manipulation, the equality of the two

series can be explicitly demonstrated.

The moment-equation method was first applied to the simple geometries of plane waves

and point sources. Since the moments are then independent of the centroid coordinate, the

differential equations simplify. Early work concentrated on moment-equation methods

. , - , .... - . .€ - .. . .. Septem ber 9



because of this simplification. Moment-equation techniques have also been used to investigate

the validity of the Markov approximation [Klyatskin, 1969; Klyatskin and Tatarskii, 1971] and

the effects of non-gaussian refractive index fluctuations under the Markov approximation

[Klyatskin, 1975]. The Green's function formulation provides a clear connection between the

thin screen and extended medium. The operator form of the path integral has also been use-

[" ful for evaluating the corrections to the Markov approximation for the higher intensity

moments (Zavorotnyi, 1978].

5. SUMMARY

A series expression has been derived for the fourth moment of waves incident on a phase

screen or propagating through extended random media. These results can be derived using

moment-equation techniques or functional methods (path integral or operator). The asym-

metric terms of the expansion generate two expressions for the intensity correlation; one

that approximates the low frequency region of the spatial spectrum and the other appropri-

ate for the high frequencies. The rate of convergence of the two approximations can be used

to produce a complete expression for the intensity spectrum valid for any initial source dis-

tribution. The calculations required for a complete expression may be excessive. However, in

strong scattering conditions, the leading order behavior of the intensity spectrum is well

described by a few terms of the series. The expressions presented here are applicable to

many problems of WPRM that involve arbitrary source distributions. These include

a) The intensity statistics from beamed lasers, navigational beacons, radar, spacecraft and

satellite radio transmissions, astronomical sources and other extended wave sources.

b) The effects of slowly varying refractive-index statistics along the propagation path, e.g. the

turbulence profile of planetary atmospheres.

c) Comparison of thin-screen and extended-media results.

d) The relationship between intensity statistics and the refractive-index spectrum.

e) Imaging through random media.

Acknowledgements: This research was funded by DARPA.

-"• "• .5.- **.....September9
J -'" "" "'" ": ".. ... ... ... .."... ... ... ........*- > ""'" "" " " 0"':. ""- ... '"".5 " ".,.%X '-- -..- ' "*i. . . ' "-.'-.".-. "- •.-. -.



References

Barabanenkov, Y.N., Y.A. Kravtsov, S.M. Rytov, and V.I. Tatarskii, Status of the theory of propa-

gation of waves in randomly inhomogeneous medium. Soy. Phys. Usp., 13, 551-680, 1971.

Beran, M.J., A.M. Whitman, and S. Frankenthal, Scattering calculations using the characteris-

tic rays of the coherence function, J. Acoust. Soc. Am., 71. 1124-1130. 1982.

Brarnley, E.N., Diffraction of an angular spectrum of waves by a phase-changing screen, J.

Atmos. Terr. Phys., 29, 1-28, 1967.

Brown, W.P., Propagation in random media- cumulative effect of weak inhomogeneities IEEE

Trans. Ant. Prop., AP-15, 81-89, 1967.

Chernov, L.A., Equations for the statistical moments of the field in a randomly-inhomogeneous

medium, Akust. Zh.. 15, 594-603, 1969. English. Soy. Phys. Acoustics, 15, 511-517, 1970.

Codona, J.L., D.B. Creamer, S.M. Flattb, R.G. Frehlich, and F. Henyey, Moment-equation and

path-integral techniques for wave propagation in random media. Accepted by J. Math. Phys.,

1985.

Dashen, I., Path integrals for waves in random media, J. Math. Phys., 20, 894-920, 1979.

de Wolf, D.A., Multiple scattering in a random continuum, Radio Science, 2. 1379-1392, 1967.

Dolin. L.S., Equations for the correlation functions of a wave beam in a randomly-

inhomogeneous medium, Izv. VUZ. Radioflz., 11, 840-849, 1968. English, Radiophysics and

Quantum Electronics, 11. 486-491, 1968.

Fante, R.L., Electromagnetic beam propagation in turbulent media. Proc. IEEE, 63, 1669-1692,

1975.

Fante, R.L., Electromagnetic beam propagation in turbulent media: An update, Proc. IEEE, 68,

1424-1443, 1980.

Fante, R.L., Inner-scale size effect on the scintillations of light in the turbulent atmosphere, J.

Opt. Soc. Am., 73, 277-281, 1983.

. - - "September 9



30

Feynman. R.P., Space-time approach to non-relativistic quantum mechanics, Rev. Mod. Phys..

20, 367-387, 1948.

Flattb, S.M., R. Dashen, W.H. Munk, KM. Watson, and F. Zachariasen, Sound Transmission

Through a Fluctuating Ocean. published by the Cambridge University Press in their series on

Mechanics and Applied Mathematics, 1979.

Flatt&. S.M., Wave propagation through random media: Contributions from ocean acoustics,

Proc. IEEE, 71, 1267-1294. 1983.

Frankenthal, Shimshon. M.J. Beran, and A.M. Whitman, Caustic corrections using coherence

theory, J. AcousL Soc. Am.. 71, 348-358, 1982.

Frankenthal, Shimshon, Alan M. Whitman. and Mark J. Beran, Two-scale solutions for intensity

fluctuations in strong scattering, J. Opt. Soc. Am., 585-597, 1954.

Furutsu. K.. Statistical theory of wave propagation in a random medium and the irradiance

distribution function, J. Opt. Soc. Am., 62. 240-254, 1972.

Gochelashvily, K.S., and V.I. Shishov, Laser beam scintillation beyond a turbulent layer,

Optica Acta, 18, 313-320, 1971.

Gochelashvily, K.S., and V.I. Shishov, Focused irradiance fluctuations beyond a layer of tur-

bulent atmosphere, Optica Acta. 19, 327-332, 1972.

Gochelashvily. K.S.. Propagation of focused laser radiation in a turbulent medium, Kvant.

Elektron., 1, 848-857. 1974. English. Soy. J. Quant. Electron., 4. 465-470, 1974.

Cochelashvily, K.S., and V.I. Shishov, Saturated fluctuations in the laser radiance intensity in a

turbulent medium. Zh. Eksp. Teor. Fiz., 66. 1237-1247, 1974. English, Soy. Phys. JETP, 39. 605-

609, 1974.

Cochelashvily, K.S., V.G. Pevgov, and V.I. Shishov, Saturation of fluctuations of the intensity of

laser radiation at large distances in a turbulent atmosphere Fraunhofer zone of transmitter

Kvant. Elektron., 1, 1156-1165, 1974. English, Soy. J. Quant. Electron., 4, 632-837, 1974.

Gochelashvily, KS., and V.I. Shishov, Saturation of laser irradiance fluctuations beyond a tur-

bulent layer, Optical and Quantum Electronics, 7, 524-536, 1975.

," - September 9



31

Gurvich. A.S., and V. Kan. Measurement of four-point field coherence function in region of ran-

dom focusing of laser emission. Jzv. Vysh. Ucheb. Zaved. Radioflz,. 21. 396-407. 1978. English.

Radiophysics and Quantum Electronics. 21. 274-281, 197&

Curvich. A.S., V. Kan, V.I. Tatarskii, and V.U. Zavorotnyi. Four-point field coherence function in

a turbulent medium. Optica Acts. 26. 543-553, 1979a.

Curvich, KS., B.S. Elenov, VI. V. Pokasov, K.K. Sabel'ferd, and V.I. Tatarskii, Spatial structure

of strong fluctuations of light intensity in a turbulent medium, Izv. Vysh. Ucheb. Zaved.

Radiofiz., 22, 198-207, 1979b. Enghsh Radiophysics and Quantum Electronics, 22, 135-142.

1979b.

Ishimaru, Akira, Fluctuations of a focused beam wave for atmospheric turbulence probing,

Proc. IEEE, 57, 407-414, 1969.

Ishimaru, Akira, Wave Propagation and Scattering in Random Media. Academic Press. 1978.

Kiang. Yean-Woei, and C.H. Liu, Propagation of beam waves through a turbulent layer. Radio

Science. 17. 1211-1219. 1982.

Klyatskin, V.I. Applicability of the approximation of a markov random process in problems

relating to the propagation of light in a medium with random inhomogeneities. Zh. Eksp. Teor.

Fiz., 57, 952-958, 1969. English. Soviet Physics JETP, 30. 520-523. 1970.

Klyatskin, V.1., and V.1. Tatarskii, The parabolic equation approximation for propagation of

waves in a medium with random inhomogeneities, Zh. Eksp. Teor. Fiz., 58, 624-634, 1970.

English, Soviet Physics JETP. 31, 335-339, 1970.

Klyatskin, V.., and Tatarskii, A new method of successive approximations in the problem of

the propagation of waves in a medium having random large-scale inhomogeneities, Izv. Vysh.

Ucheb. Zaved. Radioflz.. 14, 1400-1415, 1971. English, Radiophysics and Quantum Electronics,

14. 1100-1111, 1971.

Klyatskin, V.I., Statistical theory of light propagation in a randomly-inhomogeneous medium

(Functional methods) (Review), Izv. Vysh. Ucheb. Zaved. Radiofiz., 16, 1629-1644, 1973.

English, Radiophysics and Quantum Electronics, 16, 1261-1271, 1973.

.September9



Klyatskin. V.I.. and V.I. Tatarskii, Statistical theory of light propagation in a turbulent medium

(Review). Izv. Vysh. Ucheb. Zaved. Radioflz.. 15, 1433-1455. 1972. English. Radiophysics and

Quantum Electronics. 15. 1095-1111. 1972.

Lee, L.C., Wave propagation in a random medium A complete set of the moment equations

with different wave numbers, J. Math. Phys., 15, 1431-1435, 1974.

* Lee, LC., Theory of thin-screen scintillations for a spherical wave, Astrophysical Journal, 218,

468-476, 1977.

Macaskill. C., An improved solution to the fourth moment equation for intensity fluctuations.

* Proc. R Soc. Lon&. A. 386, 461-474, 1963.

Marians, M. Computed scintillation spectra for strong turbulence. Radio Sci., 10, 115-119,

1975.

Mercier, R.P., Diffraction by a screen causing large random phase fluctuations, Proc. Camb.

Phil. Soc.. 58. 382-400. 1962.

Prokhorov, A.M.. F.V.Bunkin, K.S. Gochelashvily, and V.l.Shishov, Laser irradiance propagation

in turbulent media, Proc. IEEE. 63, 790-811 1975.

Rickett, B.J., Interstellar scattering and scintillation of radio waves, Ann. Rev. Astron. Astro-

phys., 15, 479-504. 1977.

Rickett, B.J., W.A. Coles and G. Boo-,.sois, Slow scintillation in the interstellar medium, Astron.

Astrophys.. 134. 390-395. 1984.

Rino, C.L, A power law phase screen model for ionospheric scintillation 1. Weak scatter. Radio

Science, 14, 1135-1145. 1979a.

Rino, C.L., A power law phase screen model for ionospheric scintillation 2. Strong scatter,

Radio Science, 14, 1147-1155, 1979b.

Rumsey, V.H., Scintillations due to a concentrated layer with a power-law turbulence spec- 4

trum, Radio Science, 10, 107-114. 1975.

Salpeter, E.E., Interplanetary scintillations I. Theory, Astrophys. J.. 147, 433-448. 1967.

Y,.' .' .'..'. _'.,'.,' '.....,.-'..'. ".'...- ...._.... . . . . .. . .. September 9



33

Shishov. V.I., Theory of wave propagation in random media. Izv. Vuz. Radiofiz., 11. 887-85,
1988. English. Radiophysics Quantum Electronics. 11. 500-505. 1968.

Shishov. V.l., Strong fluctuations of the intensity of a plane wave propagating in a random

refractive medium, Zh. Eksp. Teor. Fiz., 61. 1399-1409. 1971. English, Soy. Phys. JETP. 34.

744-748. 1972.

Shishov, V.I., Strong fluctuations of the intensity of a spherical wave propagating in a ran-

domly refractive medium, Izv. Vysh. Ucheb. Zaved. Radioflz., 15. 904-912, 1972. English.

Radiophysics and Quantum Electronics, 15, 689-695. 1972.

Tatarskii, V.]., Light propagation in a medium with random refractive index inhomogeneities
in the Markov random process app oximation, Zh. Eksp. Teor. Fiz., 56, 2106-2117, 1969.

English, Soviet Physics JETP, 29, 1133-1138. 1969.

Tatarskii, V.I., The Effects of the Turbulent Atmosphere on Wave Propagation, National Techni-

cal Information Service, Springfield, Va.. 1971.

Tatarskii, V.I., and V.U. Zavorotnyi, Strong fluctuations in light propagation in a randomly
inhomogeneous medium, E. Wolf, Progress in Optics XVIII. North-Holland, 1980.

Tur, Moshe, and Mark J. Beran, Wave propagation in random media: a comparison of two

theories, J. Opt. Soc. Am.. 73, 1343-1349, 1983.

Uscinski, B.J., Intensity fluctuations in a multiple scattering medium. Solution of the fourth

moment equation. Proc. R. Soc. Lond. A.. 380, 137-169, 1982.

Uscinski, B.J.. and C. Macaskill, Intensity fluctuations due to a deeply modulated phase

screen- I. Theory, J. Atmos. Terr. Phys., 45, 595-605, 1983a.

Uscinski, B.J., and C. Macaskill. Intensity fluctuations due to a deeply modulated phase
screen-Il. Results, J. Atmos. Terr. Phys.. 45. 607-615, 1983b.

Wandzura, S.M., Meaning of quadratic structure functions, J. Opt. Soc. Am., 70, 745-747, 1980.

Yeh, Kung Chie, and Chao-Han Liu, Radio wave scintillations in the ionosphere. Proc. IEEE. 70.

324-360, 1982.

S - ".. , , .September 9



-i . . .-- , - ' - "W :- ,.- ,,, z+r-..-.

34

Zavorotnyi. V.U., V.I. l0yatskin. and V.I. Tatarskii Strong fluctuations of the intensity of elec-

* tromagnetic waves in randomly inhomogeneous media, Zh. Eksp. Teor. Fiz., 73, 481-497. 1977.
English. Soviet Physics JETP. 46, 252-260. 1977.

Zavorotnyi, V.U.. Strong fluctuations of electromagnetic waves in a random medium with finite

longitudinal correlation of the inhomogeneities. Zh. Eksp. Teor. Fiz.. 75. 56-65, 1978. English.

Soviet Physics JETP. 48, 27-31, 1978.

Zavorotnyi. V.U., Four-point coherence function of the field behind a phase screen for strong

fluctuations of wave intensity. lzv. Vysh. Ucheb. Zaved. Radflz., 22, 462-469, ,979a . English,

Radiophysics and Quantum Electronics, 22. 318-323. 1979a.

Zavorotnyi, V.U.. Four-point function for field-coherence in a turbulent medium in a region of

strong fluctuations of wave intensity, lzv. Vysh. Ucheb. Zaved. Radfiz.. 22, 979-988. 1979b.
English. Radiophysics and Quantum Electronics, 22, 677-683, 1979b.

S



35

Fiure Capuona

Figure 1. The leading terms of the intensity spectrum versus normalized spatial fre-

quency, qR, wee R1=(R/k)' is the Fresnel scale. The curves are calculated

from expressions given by Cochelashvily and Shishov [19?5] for the case of plane
waves incident on a random phase screen with a Kolniogorov spectrum of phase

fluctuations and D.(R, )=100. The ()sign indicates that VI'I(q) is negative at

high frequency.
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Abstract

The intensity cross-spectrum (spatial Fourier transform of the two-frequency intensity

correlation) for scintillations caused by a plane wave passing through a random phase

screen is considered. Two series solutions (one valid for low and the other for high spatial

frequencies) are obtained which are the generalizations of previous results for the mono-

chromatic intensity spectrum. We show that the Gaussian-field approximation (modelling

the cross-spectrum as the transform of the square of the second moment) breaks down

when the outer scale is large compared with the diameter of the scattering disk.
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1. Introduction

Wave propagation through random media gives rise to intensity fluctuations

that are wavelength dependent. Examples of this phenomenon are chromatic stellar

scintillation [Jakeman et al, 19781, pulsar scintillation iRickett,1969], interplanetary

scintillation of compact radio sources [Cole & Slee,19801, and multifrequency laser pro-

pagation [Gurvich et a], 1979; Azar et al, 19851. In weak scattering, the intensity

fluctuations are correlated over a wide range of frequencies. However, in strong scatter-

ing, the intensity fluctuations are decorrelated after a relatively small change in fre-

quency (Popov & Soglasnov, 1985; Cordes et al, 1985]. Further complexity arises when

the intensity correlation between spatially separated points are considered, and

different wavelengths at these separated points are allowed [Azar et al, 1985). Finite-

bandwidth, finite-aperture receivers are examples of such cases. These problems may be

analyzed by studying the two-frequency, two-point, intensity cross-correlation, or its

Fourier transform: the two-frequency intensity cross-spectrum.

A common approach for dealing with intensity correlations in strong scattering

conditions is to argue that the real and imaginary parts of the field are the sum of

many independent contributions and therefore become zero-mean Gaussian random

processes. We call this the Gaussian field (GF) approximation. The GF approximation

implies that the correlation of intensity fluctuations is equal to the magnitude squared

of an appropriate second moment of the field. In particular, the two-frequency two-

point intensity cross-correlation would be the magnitude squared of the two-frequency

second moment, which contains the factor exp[-!f(Au/dr)22], where a is the center fre-

quency, Aa is the frequency difference, and 4 is the rms phase shift[Cinzburg & Erukhi-

mov, 19711. For many practical experiments - is large, making the predicted intensity

* decorrelation bandwidth extremely small, and inconsistent with experiment [Curvich et

al, 1979; Flatte', 1983]. Theoretical approaches in the 1970's gave various reasons for

neglecting the rms-phase-shift factor completely [Shishov, 1973; Lee, 1976; Dashen, 19791

Dashen's argument, which applies to both the thin-screen and extended-medium cases,

hinges on the relative size of the outer scale (largest sized medium fluctuations) to the

diameter of the scattering disk. He argues that if the diameter of the scattering disk is

much smaller than the outer scale, then, for small enough frequency differences, the

* phase-shift factor can be ignored.
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In this paper, we analyze intensity decorrelations, in frequency and transverse

spatial separation, of a plane wave propagating through a random phase screen. A

series representation of the two-frequency intensity cross-spectrum (spatial Fourier

transform of two-frequency intensity correlation) is derived. An approximation to the

cross-spectrum is presented that is valid for all values of the outer scale. These results

extend the thin-screen results of Dashen to arbitrary frequency differences and provide

a description of the transition from a small (relative to the outer scale) to a large

scattering disk. The rms-phase-shift factor is replaced by a new, more accurate, factor,

and the conditions under which this factor may be omitted entirely are detailed. In

Section 2 we introduce the second and fourth moments of the field and the two-point,

two-frequency (intensity) correlation function. In Section 3, we consider the Fourier

transform of this correlation function, the two-frequency intensity cross-spectrum. We

derive two different series representations for this cross-spectrum. The first series

describes the low-spatial-frequency behaviour (i.e. it converges quickly in this region).

The other series describes the high-spatial-frequency behaviour. These series extend (for

P-P the thin screen) the results for the monochromatic intensity correlation [Codona et. al.,

19851 to two frequencies. In section 4 we discuss the relationship of our approximation

to the GF approximation. It is shown that the GF approximation (with the mean-

square phase shift factor) is valid only over a negligible portion of the intensity cross-

spectrum. Finally, in Section 5 we summarize our approximations to the two-frequency

intensity cross-spectrum.

2. Definitions and Notation

We consider plane waves, normally incident on a phase screen, that freely pro-

pagate a distance R beyond the screen to an observation plane. The refractive index

fluctuations, p(f*), in the screen induce a random phase change, E(xl=kfp(9,z)dz, as

the field passes through the screen. Here z is the direction of the propagating wave, 9" is

the co-ordinate transverse to this direction, and k is the wavenumber. The phase change

9 is assumed to be a zero-mean Gaussian random variable with homogeneous statistics.

We consider wave propagation which is characterized by narrow angular scattering by

the phase screen due to the small fluctuations of the refractive index. The complex

scalar wave field can be expressed as E(K',z;k)ei', where the field E has the value on

I
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emerging from the screen

E(jr,o+,k) E (j',0;k) eO(9(1

expressed in terms of the incident field E(7,O;k). In the space after the screen the field

satisfies the parabolic equation

aE i a
2E (2)

0z 2k ajr2

For a plane wave, the incident field is a constant, which we set to unity. The solution

of the parabolic equation at the observation plane with the proper initial condition is

then

E(i,R;k) = k ---,k(i )2  (3)
2iRf 1'e(r')ep )k,- d2z,'3

2iirR f e p( 2

Averages of the fields are performed by the use of the identity

-1<2
>

<2i°> = C (4)

valid for any zero-mean Gaussian random variable. This, for example, gives the average

of the field (first moment) as

where VI is the mean square phase shift.

The random nature of the fields is conveniently described by statistical moments

of the field evaluated in the observation plane. The moments of particular concern for

the study of frequency decorrelation are the second and fourth moments. The general

second moment is given by
r ( ,n;k k )- <(K*,R ;k,)E*('(,R ;k2)>-()

_ ~k2 00 eI k )24> k2-D~j, 1 I2 x L.L Z-j 12, #2,

(21rR)2 ff Fep- ~ 2 D1 x Ix 2R [ j( ' 2 -kA-j)j) I~zd

where the fields are given by (3). The identity (4) is used to obtain

2 =C (7)

with the wavenumbers expressed in terms of sum and difference variables

b
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The second moment is expressed in terms of 4,, which is the mean-square phase shift for

a wave with the mean wave number, E, and the phase structure function, klk2D,, asso-

ciated with a wavenumber which is the geometric mean. The wavenumber dependence

of the phase structure function is explicily displayed by expressing it in terms of a struc-

ture function for the integrated index of refraction fluctuations, D.,

) < [f(p(j,z)~-p(,z) dz'J2 > (9)

It is convenient to express the second moment in terms of sum and difference variables

for the co-ordinates

= I p= 4_-V (10)

with similar expressions for the (primed) co-ordinates on the screen. Then the second

moment is given by

,,R;k,k 2 )- ()k1k2 exp 0- k I k p(P )

(2rR) E 2J..-00

The a' integration is immediate since the phase r 2 is independent of r, which follows

from the translation invariance of the problem for an incident plane wave. Performing

the a' integration we secure for the second moment

k___ - I k jk 2 D,() [ klk 2  -

r2 ( ,R; ,k2)=2 R 2k exP[-2R)2 2 exP L  2 -2'#1 (12)

The general fourth moment involves the field at four different spatial points.

From the solution for the field, (3), this moment also involves the integration over four

points on the screen. It is convenient to transform the co-ordinates of the screen to

9*2'S 1 1 -1 1

1- -1 -'l
x4
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A similar transformation exists for the co-ordinates of the observation plane. For the

two-frequency, two-point intensity correlation function, which is a special case of the

fourth moment,

C,(fj,ij,R ;k,,k2) <I(Zj,R ;kj) 1(jr,R ;k)> (14)

S< E(ij,,R ;k,)E°(f,R ;k,)E(2,R ;k2)E*(f,R ;k2) >

two of the transformed quantities on the observation plane, -1 and 6, are zero. Using

the solutions (3), the above transformation, and (8), we find that the integration over

the centroid, a', gives

C,(X,R;kl,k 2) = )2 fe 2 Vexp _P 2E (15)

where jp=i-i and

2D 6k 2D 6k (16)
V 4 = k i D ,(( - -- )F + k 2 D P ( + 2F )

+2F " 2F

3. Intensity Cross-Spectrum

The intensity cross spectrum is given by the P4 Fourier transform of (15), which

produces the delta function, 6(9*- P ( -(6k/2'))), where r is the transform vari-
R

able. Integration over -11 yields

*,,(rR;,k ) = f " d2#1 (17)

where
V 4 = k D(R A0 r(i+_-)) + k 2Dp(R, s 6r(l--k)) (18)

2j2E 2E*-k~k 2 ID4PW+R. .or) + D,(p'-R.e Noj-- D4P('+ .R. eoW)- D ,(p 9 -- ' R. e'i

We have introduced two physical scales of the medium which are defined at a

wavenumber

9-8-8



ko - k- k (19)

These scales are the coherence length of the field, so,

k0
2 D (so) =1 (20)

and the size of the scattering disk, Re,

R.- (21)
koso

The coherence length is important in that the cross-spectrum is negligible for spatial

frequencies x >1s"', so that the combination s0 is always less than unity. The scatter-

ing disk size, R-1, sets the scale that separates high and low spatial frequencies. Notice

that the combination

Rj -R° 0  (22)

appears in (18). RF is known conventionally as the Fresnel radius; it determines the

intensity spatial scale in weak scattering. Unfortunately, the final integral in (17) can-

not be done exactly. Our approach is to find two separate approximations for high and

low spatial frequency. First we consider low spatial frequencies.

When x <11R., the P Fourier transform has substantial contributions from

everywhere in the integration plane, and over most of this region, W >R s0 . It can be

seen from (18) that V4 will be dominated by the first two terms on the right hand side

of that equation since the $' dependent terms nearly cancel. In this circumstance, the

dominant behaviour is j' independent. Since the jP dependent terms in V4 are small,

the exponential may be expanded in a Taylor series

* 2 exp -[k2 + k2 (23)

where R =R, 0or and i3 =(6k/2)R. sox' Inserting the above expansion into (17) yields

explicit expressions for the terms in the low-spatial-frequency series,
00

tj(irR;kj,k2 ) = 4 ej!%)(X,R;kj,k 2) (24)
a-0

. . .. . .. . . . . . . .9 '.. - .... . -18-185
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The structure function D. can be expressed in terms of a spectrum by

DIre=iJr, [ . ' (25)

with , as the power spectrum of a quantity which is the refractive index fluctuations

integrated through the screen. The two leading terms in the low-spatial-frequency

series are

Sj(%iR ;k1,k2) = 6(- (26)

and
-4k~k 2  _I k(I +6k. 6k 0_] ] (7

O t!V(j,R;kj,k2)- 4kk exp IV 2,(1 k) s° -I)+k D,((l--L )R .,' -1(7
-~-ep~2k 2F 3 2F 80(7

O .( [.2(R,.2) - sin (!- RF0/4)

The correction (27) modifies the behaviour of the leading order expression, (26), for

0 <Ic <l/R,. Notice that the Fresnel radius squared, Rm R, s appears in the sin2

terms, revealing these terms as the usual Fresnel filter. For weak scattering (R. <RF)

the Fresnel filter cuts off the spectrum at large spatial frequencies. However, in strong

scattering, the exponential term in (27) provides the cutoff.

We now turn our attention to high spatial frequencies. It is convenient to

separate V4 into V4 =- V40 +V4' +V4s I, with

V0 k , k2 D [(p'+5') + D,('- ) (28a)

V4° (;P,- ') fik12 D,(;P +- )+k g D,(;P-i--2kjA, D,( )  (28b)

and

V4 I(',,' = I k2 [2D,(7') -D,( ' + - )P (28c)

where oRe0 j and -(6k/2F)R aoi Notice that V40 is independent of 0'. The

exact expression for the cross-spectrum is then

_,, V O _ - _ n.V O + v RI,
*, (2,R; fe) r''e2 ' 'd2 (29)

-0o

In the monochromatic case (6k=O,P-O) at high spatial frequencies and strong

* . * . .g-18-5 .s
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scattering, the terms corresponding to V4 dominate the integral for the spectrum.

[Gochelashvily & Shishov, 1975; Rumsey, 19751. Rumsey showed that, over the impor-

tant region of integration, the # dependence of 4'r is negligible compared to that of

V.0, giving the intensity spectrum as the Fourier transform of exp[-kjk 2D.(jP)j. This is

because the quantity s0i is of the order of unity, so that -j9-R° , while the important

region of integration is Os:tsso< . When 6k is not zero (but small), the high-spatial-

frequency behaviour of the cross-spectrum is still controlled by V4 for the same reasons.

Note that these terms do not dominate the behaviour of V4 for all jP and , but only for

9 <ZR° e0sc. Unlike the monochromatic case, when # is zero V4 is non-zero. However V4

still increases with increasing 9, so that the Fourier transform integrand, C-V4/2 is larg-

est when 09 is small. The approximate domain of jP, in which the Fourier integrand is

large, is where s o 80. In this regime the V4's are roughly independent of #I, so that

the integrand is dominated by V40. The limiting value, so, leads to the requirement

K* RO-  (30)

wherein we expect the 0 behaviour of -V4/2 to be controlled by the D,( +i')+D,(j- - )

terms. This is verified explicitly in Appendix 1. Thus V4' is small compared to V40

allowing us to expand the final exponential in a Taylor series yielding a corresponding

series for the intensity cross-spectrum

A ~ j'~rR;kj,k) (31)
£-0

The leading term is

*(-,,R;kk 2 ) = 4 f Cr.P (32)

2 2F 2E

For the monochromatic case, the corresponding term is commonly called the high-

spatial-frequency approximation.

Writing the structure function in terms of the spectrum as in (25), the second

term in the series expansion of exp[-- 4R] is

2 . . .~f4E.~ e So 1L (33)

E2 f 2 *-'.. .. *.. - -



This yields the first correction to the leading approximation, (32),

* ! U(r?;k,,k 2) - 4 -- k- -v Of.(r") 8 i'r'+R"' (34)

exp -si 2 J
1 2 2E 2 J 2

where Vs ° is given in (28b). This correction term is important in determining the con-

vergence properties of the series (31) for high spatial frequencies.

4. Comparison to the Gaussian-Field Approximation

In strong scattering, the coherence length of the field, 80, is much smaller than

the size of the scattering disk. This implies that the field at the observation point is

the sum of very many contributions from the scattering disk. If these contributions

were independent, then by the central limit theorem the field would obey Gaussian

statistics. If the field is a zero-mean Gaussian random process then the intensity corre-

lation function is

cQp(2X,R ;kj,k 2) = < I( ,R ;k1)> < I(1,R ;k2)> + Ir2 (iA,R ;k1,k2)1 (35)

In the thin screen model and an incident plane wave, the mean intensities in the first

term are independent of position and, by definition, are unity. Because of translation

invariance the second term is only a function of Y=iff-Z. Inserting r 2 from (12) and

transforming over 0 yields the GF approximation to the intensity cross-spectrum

*GF(arR;k1 ,k2 ) - 6(al + exp 00 ( )i

exp k k A-[D,(ip+-6kR. n)D(P 2 1 R..or)I]d2P (36)

We wish to compare this GF result with our previously derived approximations:

(26) + (27) for small x, (32) + (34) for large x. We see that (36) resembles (26) + (32)

except that the factor expt-V s °0 ] has been replaced by the phase-shift factor

expI--6k/2F)209. However there is a problem with the low-spatial-frequency behaviour

of the GF approximation. On quite general grounds it can be argued that, for low spa-

tial frequencies, the cross-spectrum consists of a delta function piece plus a term that
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must vanish as the spatial wavenumber goes to zero [Tatarskii, 19711. If (38) is applied

for small x, the delta function is correct but the second term goes to a non-zero con-

stant for small a. Compare this situation with our results (26) and (27). The result (26)

correctly gives the delta function at the origin. Our correction (27) substantially

modifies the spectrum for non-zero a, but satisfies the requirement of vanishing as

a--. 0. For a power-law medium, such that - with a<4, it is seen that (27) van-

ishes as i 4-.

To evaluate the GF approximation at high spatial frequencies, we are interested

in whether expj--(6k/2F) 2
4

2j is a good approximation to expi-V4R0 . Consider a pure

power-law phase structure function

k&D(r) = 8 8 <1oest, (37a)

kD( ) > ogr>, (37b)

where so is the coherence length of the field, and 1,,t, is the outer scale of the spectrum

of phase irregularities. In most cases of practical interest, the outer scale is much

larger than the size of the scattering disk.

Since the phase structure function saturates to 402 for scales larger than the

outer scale, (32) gives the same result as (36) only for spatial frequencies such that

a >(Ioe,/R)a "0. The only non-negligible portion of the spectrum is for ac <I/so, leading

to the conclusion that the GF approximation is only valid for a significant portion of

the spectrum when the outer scale, In..... is small compared to the size of the scattering

disk. However, in virtually every case of practical interest, the scattering disk is small

relative to any estimates of an outer scale. In these cases, the GF approximation

becomes valid only after the cross-spectrum has dropped to a negligible value.

5. Comparison to Neglecting the Phase-Shift Factor

As mentioned previously, various arguments have been given for using (36) for

the cross-spectrum but neglecting the phase shift factor, e( l'e2 :

0GF(jCR;k'k2)' f ce Pexp - 2 [D(j + -(, - R. so d20 (38)

Dashen [19791 considered this problem theoretically for both a phase screen and for an

= •,.; ,,,~~~~....,.. .;..........-.-....... .-..... ... "...........................-..-.............91-8



extended random medium and presented results valid for infinitesimal frequency

differences. There are two different regimes in strong scattering: "partial" and "full"

saturation. When the size of the scattering disk is larger than the outer scale of

medium fluctuations (full saturation) the contributions are independent and the GF

approximation is valid to first order. However, when the scattering disk is smaller than

the outer scale (partial saturation), fluctuations with a size larger than that of the disk

contribute a random, coherent phase to the field so the many contributions are not

independent. Since this coherency only affects the rms phase, this lack of independence

will not affect any monochromatic intensity statistic but will be important for multifre-

quency statistics. For a medium characterized by a fluctuation spectrum with a spec-

tral index less than four, the small-scale fluctuations can cause large (saturated) inten-

sity fluctuations, but the rms phase is dominated by the large-scale fluctuations. For

small enough frequency differences, this phase cannot affect the intensity, providing a

first-order justification for dropping the exponential factor containing the rms phase.

Further experimental confirmation of this result was provided from ocean-acoustic data

[Flatte', 19831.

Our more accurate expression (32) implies that neglecting the phase-shift factor

is valid over the portion of the spectrum for which V4R0 <1. Using the largest

significant Pc value (,-1) in (28b) leads to the requirement

k2 D,(R. (I+ ))+k? D,(R. (I- ))-2klk2D,(R.) < 1 (39)
2E 2

For a power law structure function this expression can be simplified by performing a

small 6k expansion ( valid for 6k <2E ) leading to

(_L2U <1 (40)
2F

where U is defined by

U =- k0 , -(R.)[ ]P (41)

This requirement implies that, as the scattering becomes stronger, the region (in 6k ) for

which (38) is valid becomes smaller. This is not a severe restriction because the fre-

quency decorrelation bandwidth decreases as the scattering becomes stronger, limiting

the values of 6k which enter (40). We set this limiting value to be the decorrelation

- -. .- -. . .-.. . .. * • . *- . . . . . . . . *% . . . . , . . . . ,.~ . , -.-
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bandwidth, which we estimate by looking at the asymptotic (large x ) form of (38).

For large x, there are two important regions of integration in (38): near p-0,

where the integrand is largest, and near 0= (6k/2F)Rs 0ic, where one of the structure

functions vanish. In Appendix 2, it is shown that the second region dominates the

asymptotic behaviour, leading to

..- g/ exp- D, (-R 'R.som cos [ 2(42)[2 E 2F [2E 00

The integral term in (41) is just the angular spectrum and its important scale is s0. The

cosine term oscillates rapidly for x>,vb=Vb/2/Rr. The frequency decorrelation

bandwidth can be estimated as that 6k for which i, .s 1. Using (41) and (21) this leads

to

6k4 FtU irIu-Pl (43)

Inserting this bandwidth in (40) yields the criterion for neglecting the phase-shift factor

U1 - 2/p <1 (44)

Thus, for p <2, the approximation of neglecting the mean-square phase shift improves

as the strength of scattering increases.

It has been shown that the contribution to the scintillation index from the high-

spatial-frequency correction term is proportional to U1-2/' [Prokhorov et al, 1975].

Thus if the correction term to the scintillation index is small, it is appropriate to ignore

the phase-shift factor over the main portion of the spectrum. On the other hand, if

correction terms, such as (34), are not neglected, then it is inappropriate to neglect the

phase-shift factor, since it generates corrections of the same order-of-magnitude.

6. Summary

In the previous sections we derived two different series for the intensity cross-

spectrum: one describes the low-frequency behaviour while the other describes the high-

frequency behaviour. Keeping the first two terms in each series gives expressions which

approximate the cross-spectrum in the two respective regions. The relevant formula are

given in (26),(27),(32), and (34). The phase-shift factor in (32) containing V4'0 correctly

describes the effects of any coherent contributions from the scattering disk for all values
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of the outer scale and for arbitrary frequency differences.

The GF approximation should not be used when the outer scale is much larger

than the diameter of the scattering disk, and the reduced approximation, (40), should

only be used when U'-/' <i. In very strong scattering (large U), when the scintillation

index has nearly saturated to unity, (40) provides a good approximation over the main

portion of the spectrum.
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Appendix 1

We show that dependence of V4"' is negligible compared to that of V4 where,

from (28),

V4 = kjk 2[Dl,(R+i)+D0,(R-W)] (Ala)

and

V - kk2[ 2DM,(1'-D,(if+./)-D,( '-')I (AIb)

where -=---R,a 0-' and '=(6k/2;F)R.ao-. We have argued in section 3 that the dominant

region of integration is for small i' <R. sox. In that case, the two terms in (Alb) may

be expanded as

D,(R, aoe+P')+D,(R. 8oZ-P') = 2Dj,(R. 80C)+ P- D(r)Ii.=R..or + (A2)

The second term may be bounded by

I . D(i.)Ir-..o X 1 6 12 D(R. soK)I (A3)

giving the leading j dependence of V4" as

V R  ;t klk 2#1 D "(R, so )  (A 4)

In verifying that V41 controls the jF dependence we will examine three cases

Casel: -k R, so. <P'
2F

2F

Case: -k-OO R
2F

In the first case, P is large compared to 6kR, aor/2F giving the leading dependence

of V40 as

V4 2klk 2D4(P') (AM)

so that we require

#1 D,"(R° so i) <€ D0(1) (A7)

9- t8-185
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Using a model power-law structure function, k2DP(.j=(s/so)', this requirement becomes

x2 (AS)
p(p-l)

Since p is typically in the range 0 <p <__ 2, we find an upper bound for the left-hand side

by setting y-so and P = so I resulting in the requirement

P (P -1I) < U2-)/p (Ag)
2

* where U is the strength of scattering parameter, U = k D,(R, with k0 defined in (19).

Therefore, the Vo term controls the X dependence when the strength of scattering

parameter, U, is large. When p is 1 or 2, our argument breaks down. For p =1 the

approximation still holds by another argument, while for p =2, there are no scintilla-

tions.

In the second case, /' is small compared to bkR, .oic/2E, so that a Taylor expansion

C of the V4 term yields the leading #' dependence

V4°  k~k:'2D,"( k Rso,,) (AlO)
2F

This leads to the requirement

DP,(R. sx) -,kD k R, sox )  (All)2F

which for a power-law structure function is equivalent to

I < fLk ] (A12)

Since p is less than 2, this implies that 6k is small compared to twice the mean of the

wavenumbers.

Finally, in the third case, #' is about the same size as bkR, s 0 K/2F so that the

requirement for neglecting the #' dependence of VR becomes

6k D6kR

-sR.8oi DISH <DP(-R.s a0o) (A 13)
2E fJ

which, for a power-law structure function, leads to

, " " '- "--.. . . . . . . . .18 '8
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•4 (A14)
(8k/F)2 -' < 1 p1p-1)

and is easily satisfied for small wavenumber differences.

In all three case considered above, the combination of structure functions in V4

dominate the dependence if U is large and 6k/2E is small.



Appendix 2

As mentioned in section 4, in (38) there are two important regions of integration

for large i. One is for small # where the integrand is largest. The other is where one of

the structure functions vanish, P_=+(bk/2F)Rs0#c. Near 0=O the exponent in the

integrand, V° may be approximated

Vo Ikk[2D(AkR.+fi..Al2D I (B3)

which leads to rapidly decaying component of the cross-spectrum. For the other region

of integration we approximate the integrand of (37) in the vicinity of P=(6k/2E)R.s0K

to be dominated by the "fast" variation of the structure function near its zero and the

"slow" variation of the other portion of the exponent. Including the =0 contribution

gives the cross-spectrum asymptotically as

- D, z)-j s,0 f' , exp .. '-jDa(S, Els-' I2.(E/),,oI. (B21

2Ek2 M 0k

For a power-law structure function, the first term falls off like

t Cex2 ' cC2
'  (B3)

where CI and 02 are constants. The integral in the second term is just the angular
spectrum, which for p <2, fa0ls off like k---. Since this is a much slower fall off than

the P=O contribution, the asymptotic behaviour of the cross-spectrum is dominated by

the points, P=+(6k/2F)R 'r.

(
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Abstract

Differential equations for all moments of the field of a wave propagating through a

random medium are derived under the parabolic approximation and the Markov

* approximation, but including anisotropy in the random medium and a deterministic

background refractive index. Mathematical equivalence is demonstrated between these

moment equations and path-integral expressions for the moments obtained under the

* same approximations. A discussion of approximations that are weaker than Markov is

given.
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L Introduction

Many problems in wave propagation through random media concern phenomena in

which there is no significant backacatter, so that a parabolic approximation may be

made to the wave equation.11 In these cases a further approximation, called the Markov

approximation,121 leads to relatively tractable mathematical expressions for moments of

the field that can be used for practical calculations. Two quite different formalisms

have been used in this context: the moment-equation and path-integral techniques.

A path-integral expression for a general moment of the field of a wave propagating

through an inhomogeneous, anisotropic medium in the presence of a deterministic back-

ground refractive index has been derived, 3' and the expression has been used for specific
calculations. 14,s.6l

Moment equations in coordinate representation have been derived for homogene-

ous isotropic media in the absence of a deterministic background.12 1 Treatments of inho-

6 mogeneity, anisotropy, and deterministic background by moment-equation techniques

have heretofore been confined to special cases involving the first and second

moments.Tsl

We present here general moment equations in coordinate representation that

account for inhomogeneity, anisotropy, and deterministic background, but require the

Markov approximation. We derive these equations using the time-ordered-product

method of Van Kampen,0I which also provides a derivation of equations that are valid
6 under conditions more general than the Markov approximation. The modified equations

are more complicated than those that require the Markov approximation: a special case

was previously derived by Besieris and Tappert. 10'

We also show that our new general moment equations derived under the Markov

approximation are mathematically equivalent to the path-integral expressions for the

moments that have been previously presented. Thus, the two popular formalisms,

under the Markov approximation, are not different in content.

,. .. .. . . ., . 0 , , .. . . . . . . , . . . . . . . , . . . . : . . . ,.-..., ..



The plan of the paper is as follows: in Section I we establish notation, present our

new moment equations, and present path-integral expressions for the moments in imi.

lar notation. In Section III we establish the mathematical equivalence between the two

techniques. In Section IV we present the derivation of our moment equations, and,

along the way, derive the modified equations. In Section V, for completeness, we

- rederive the path-integral expressions for the moments. In Section VI we comment on

the use of different coordinate systems (such as cylindrical or spherical) in the writing of

moment equations. A summary concludes the paper.

.......
N.N
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U. Notation and Markov-Approximation Results

Consider waves travelling predominantly in the s direction. Let r be a transverse

coordinate (e.g. two-dimensional, but in fact general), and k be a reference wave

number (k - 2sw/CO), where w is the wave frequency and 00 is a reference wave speed).

Express the full wave field as

is(r,,,t) - O(r,)) xp[ik()- O(]1)

* Let the wave speed (a function of position only) be

C(r2,Z) = C [rI- 2 U,(r)- 2(f, z)1 FA 0 C l+ UOf) + i, Z)1 (2)

where Uo represents the deterministic background and # represents the fluctuating ran-

dom medium, assumed to be a realization of a zero-mean Gaussian process.

Then, the parabolic equation (in rectangular coordinates) for the reduced wave

function 0 is:

+= V +k2Uo(!)O + k2p(',z) (3)

2

where V2 is the transverse Laplacian.

A moment r is the ensemble expectation value of a product of O's and 0 * 's where

each 0 or # * is evaluated at a different position ri and wavenumber ki. We write, in

abbreviated form,

..=< ,*. , ,,....> (4)

Define an operator LO such that
*0- ' 1,. ( 1 V,+kU 1  (5)

J-1 1i

The terms that apply to the O's use the plus sign and those that apply to the 0 * 's use

the minus sign. The subscript " requires that V7 operate only on i; and U0 . mUo(r).

Define the important combination of fluctuation quantities as

M(Z) - " kp( i,) (6)
j=1

-V. -,*t
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Our general moment equation under the Markov approximation can be written

Sr.r~(,) - )s~ ..a' <M(,)M,,q (, > r.(,) (7)

where M (qz) is obtained by evaluating M(s) with all the 1 at s shifted by the

transverse distance that a deterministic ray through (i;,) moves in travelling from z

to S' (see Figure 1). In other words M,,.(&J is evaluated at point B: i.e. r1 , ()

where the ray is forced to go through rj(z ). The particular ray is determined not only

by the local position (rj,z), but also by the initial conditions on the moment; for exam-

ple, the location of a point source, or the direction of a plane wave.111) The unphysical

assumption of delta-correlated medium fluctuations along the propagation direction

would imply that M.p(z) would be evaluated at point C: i.e. i(z) (and z'). In the iso-

tropic case (or in the case of propagation along a principal axis of the anisotropy) the

difference between evaluating MA(:') at r;(z) and (,i ls' is negligible, and the delta-

correlated assumption is adequate. In the anisotropic case, the necessity of defining the

unperturbed ray makes (7) somewhat complicated to apply for general initial condi-

tions. However, since (7) is a linear equation, superposition can be used whether the

source is a point, an incident plane wave, or an arbitrary coherent or incoherent sum of

point sources. Equation (7), which is one of the principal results of this paper, is

derived in Section IV.

We now turn to the path integral method. Equation (3) has the formal solution

= f D r(a) (8)

where /(z) means integration over paths, r(z) is a transverse vector indicating the

position of the path at a, and

S = k fz -( -U(r)- (r, z) (9)0

In order to obtain a given moment, expressions like (8) (or its complex conjugate) are

multiplied together, and the ensemble average is taken:

r., mf D*(z) < e > (10)

J-

',, . .o ./ .- .-.- .- . ., -.. .. . , . . -.. .. . . .. .. .. . . . - . ,. . * * *. . . . . . ... .7 - 1-
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The Markov approximation yields (See Section V):

r. -I Dr (s) exP Ids' .,.iki -d -Uoj - z <l A_,,< z, ,,
Jfl ~a) I- MA 0 . 1

(Ii)

We show in the next section that the moment equations (7) and the path integral

expressions (11) are mathematically equivalent.

4

..-..
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- L Equivalence of Path Integral and Moment Equations under the Markov

Approximation

We follow the technique that Feynman"'2 used to show that his path-integral

expression for nonrelativistic quantum mechanics is equivalent to the Schr~dinger equa-

tion. The key to this demonstration is an understanding of how the important paths

behave transversely as they move in : from a particular point. Feynman found that

these paths resembled random walks in that

Ir- - 1)l - ('-z)" (12)

as z' gets close to z. Given this behavior, it is easy to expand (11) in a Taylor series

and obtain a differential equation which will turn out to be (7). We give the demonstra-

tion of (12) in the Appendix.

The path integral is defined as the limit of an integration over a set of "phase

screens." These screens are at values zN = N6z. The derivative -;- at z = ZV is

defined as (r(ZN +6Z) - (ZN))Iz f -" The limit 6z--0 is taken after the integrals

are evaluated. The differential equation is obtained by considering the integral over the

very last phase screen. The last integral in (11) can be written in terms of

. '=i (R -Oz) and r, =.(R). Also, we define a i;-i;'. Then r. can be

expressed as:

,. r=.({ }() = 13)

- dI z? < M(R)IM. ( r=lr.-)

ik. (or)2
where {r} denotes the set of m+n a 's. The first term in the exponent, :k '-

2 8z

is 0(1) for small 6z, because of (12). The exponent of the remaining terms can be

expanded, since they have an explicit 6z, as well as higher order terms. This results in

|I.. .- . ,- -....- .-.. .- .. - . . . . .7-11 -ql



Sr.((r),R) - (14)

Nj fl (6Iieexp{ kik,(6r1'26))

1i E ~ ik1 110 (R) +- I ds' < M(R) M~~z)>1r~(I R-5)+06'

2s CO

We now have a relationship between the moment at R and the moment at R -6z,

which we derived from our path-integral expression. But since the moment is a

differentiable function we can find another relationship by Taylor expansion as follows:
2!

Pr((f',R -8z) f -aj,-=6r.Vi + I6z .v,) r,.(( C),R) (15)
i 2

+ 0(h. )

Substituting (15) into (14) we find

r..({r'),R) = NJHj (dgi- exp{ l:ik,(6ir')/26z}) (16)

Sji -~ . "vj +-( i. v}-6ZOR

I !EI 2 o E=_

-6Z iki Uoj(R)+ f dif <M(R) Mg, ) > r..l(r),R) +0(6:')

The term linear in E"i - Vj is odd in 6ri and therefore gives zero due to the Ui;

integral. The term that is quadratic in 8,; can be integrated by parts, yielding, to

order 6z:

6: . ' . ' . ' .. - . - . . o . . . . .. .i
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.R S- N ,(de,, expt)ik (6r,'/26s

2 i4-VkYi kU R

f- I z'<M(R)M... (j) > ,r..),R) (17)

The only way (17) can be true for all 6z is for the coefficient of 6z within the curly

brackets operating on r., to give zero. Therefore, setting R---z,

, = - i !- l 4 +k,2Uor -. ({iz)

-J dz' <M(z)M.q(z) >r..(.((),) (18)2 -00

which is identical to (7), as required. Thus, we have derived the moment equation (7)

from the path integral expression (11). This shows that the path-integral expression

(11) is a solution of the moment equation (7) and hence the two techniques are

equivalent.

.....
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IV. Moment-Equation Derivation

We derive our moment equations by the method of Van Kampem.01 The advantage

of his method is that the physical basis for each approximation is readily apparent. He

bases his method on techniques that were developed for quantum mechanics.

We shall find that the Markov approximation requires that the dimensionless

number L,',M be small where L, is the medium correlation length in the direction of the

wave propagation, and M is the "typical" value of U, defined by (6) and called the

*• "interaction strength." For the first moment M = ka, but for higher moments M is the

sum and difference of a number of kp's at different positions, and with different values

of k.

We start with the parabolic wave equation (3) and the definition of Lo and M, and

write:

0.01 02 .. * . (L* +M)01* 09

0 The "interaction representation" is defined by:

-** . 0 -+- i 1*+. (20)

and

M,(z) = C "M(Z)e-st (21)

With these definitions, (19) becomes

i iC,(.P1 ... 0.+.)1 - AMl(z)(0 02 "" 0.+.)l (22)

This equation is linear and has the formal solution

(#P,* #2 * '" .. . Texp ( -jif M,(z) dz,) r..(o) (23)
0

r'..(O) is the initial condition. The "time-ordering" symbol T requires explanation. One

notices that M, is an operator, not just a function of space. Ml(z,) and M;(z2 ) do not, in

k general, commute. If they did the solution of (22) would be given by (23) without the T

symbol. The T symbol means that a product of operators to the right is not applied in

the usual order, but in such a way that operators with smaller values of z' are to be

applied first. Thus there is an ordering in s. (The T-symbol was invented for solving

problems in quantum mechanics where the analog of the longitudinal direction z is the

-:.- ,- -.. :.,?.:... /-..... ...-..... .... ........... .. .. . ....... .. ....
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time.) For example,

Texp( -if M'(81 is#) - (24)

01 0

for 0 < s, 5 x. Another example is

T I MI(,lDd'f = (-i) j MZj... ,(SJ M,,) ii dZ.- ... (25)k!

where the integration region on the right side of (25) is 0<s, <ig. <a, <,, which is Il

times smaller than that of the left side, cancelling the factor of ki. Using either (24) or

(25), one readily checks that (23) is a formal solution of (22).

We are assuming that M is a Gaussian process. The result that the expectation of

the exponential of a zero-mean Gaussian random variable is the exponential of half the

variance follows from combinatorial factors and remains true for a time-ordered

exponential. Thus

r , Texp - - < [.dMIlt ' > r.,(o) (26)

Although this is a formal expression for r.., it is not immediately useful for calcula-

tions, since there is no simple algorithm for evaluating a time-ordered exponential (in

contrast to a normal exponential). Van Kampen proceeds by differentiating (26):

- (2?)

-T < M,(s)fd' MA(: > exp <>rO
0

The M,(s) has the largest s, so it is written in the proper ordered position. The M,(z')

that it is correlated with, however, might occur anywhere relative to the MI(z)'s in the

exponential. If LpIM? < 1, very little error is made by assuming that the first two M,'s

are in the proper order, so that the T symbol can be brought through the first expects-

tion value, yielding:

""-11 -'85I.. , .. . , ' % ' . ,., .. % , .'% . . . ." . . . . . . , . . . '. . .. . . . .' '. . .. - . . . . . - . - . . . . . .
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iI

.- - <M,) J d, M,(,q > (r..), (28)
S

This may be shown by expanding the exponential operators in (26) or (27) and dis.

cussing the order of M's in each term. The Nth term in the expansion has 2N

occurrences of M,, and is of a magnitude

<(J!M, W,,r >N/N1 (29)
0

where typical eigenvalues of the operators are implied. The terms beyond

N 4<(fdZ)> (30)
0

become negligible compared to the original exponential in (26), so we have to deal with

at most N pairs of M,'s from source to range a. The two Mt's in a correlated pair must

be within L. of each other to give a nonzero correlation. The number or pairs may be

estimated as

N s 4L,, (31)

where W is a typical value of M?. (See Figure 2 for a schematic representation.) Our

approximation reduces to saying it is unlikely to find a third occurrence of an M in

between a pair that are within L, of each other. This probability is roughly

Probability a 1 P LM12 (32)

Thus if the fluctuations are weak enough (LM, < I), the approximation is valid, and

(28) is justified.

We call (28) "first order perturbation theory." In typical situations, a is much

larger than Lp, and the lower limit can be replaced by -oo, making the equation

independent of the source position. Moreover, the integral from - o to s can be

replaced by half the integral from -oo to o, when the correlation is a much slower

function of -(z + a') than of x - 0 . The result is used, not in the interaction represen-
2

tation, but in the original representation. The exponentials of (20) and (21) are

removed, giving

[... ,..,....,..... .. ,... . ... ........-.......... ...............
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**.r-.(,) - (3 s)

- iL,.or.(,) - f 4, <M (,) s -1L.a -. M r,.I,3. -.4P > r.I(,)

For the second moment, this equation is related to an expression of Besieris and Tap-

pert.il Although their work was for the second moment, we can generalize it directly;

therefore in the rest of our comments we treat the general moment r,,. where Besieris

*and Tappert treated only r1j. Their equation 3.2 was expressed in a Fourier-

transformed domain, but can be expressed in our notation as

5 t -,r..(5) = -<Lr.,(,) - e :, ><M() r-.L. - (M( , )> rP . (5". (34)

This equation is equivalent to (33) to order L,?M?, and it should be noted that both (33)

and (34) are invalid if L2M,2 is not small. Unlike (33), (34) implies a "memory" effect in

which the gradient of the moment depends explicitly on the moment at all previous z's.

The Markov approximation leads to (7), which eliminates the memory effect and

requires only a correlation function of the medium along a specified (shifted) direction.

Besieris and Tappert pointed out that a weaker approximation, called the "long-time

Markov" approximation leads to a local (non-memory) equation (their equation 3.3),

that in our notation is expressed as

a.r..- -rLor..(s) - I J ,'<M(,) -  - L(I> r..a(). (3)

where the LO operator acts only on M(ol, not on [r.(), in the last term. We have

derived (35) by use of the Wigner-function notation of Besieris and Tappert. We are

only considering situations in which the parabolic wave equation is valid. It has been

shown that in that case the long-time Markov approximation is valid,D0 and therefore

(35) is as valid as (33).

Because L0 is an operator, the integrals in (33-35) involve the medium correlation

function in all directions, or, in the Fourier-transform domain, require a scattering ker-

nel as a function of scattering angle. The Markov approximation to (33) consists of

simplifying the deterministic propagation operator e-'L' -  for a - z' on the order of

Lp. Instead of correlating M(s) with all possible transverse positions of M(a"), the

". . , , . .. .-.. . . . .... -. .- -.S.. .. . . . .. . . . . .• •. .. . . . . .7 u ',

.... .. ., ,. ..., ...., .. . . . . . ....... ,. ... . . . . . . . , .. . . . ,. . . . , . .. . .,.



Markov approximation corresponds to choosing only one transverse position for M(&j.

(See Figure 1, where point A represents tn arbitrary transverse positiou.) If the wave

represented by r..(z) were the unperturbed solution, then deterministic propagation

would move the phase in the direction of the unperturbed ray. If the wave energy is

travelling close to the unperturbed ray this operator retains its behavior to first

approximation. As a result, deterministic propagation approximates a shift along the

unperturbed ray to point B, i.e., r(s) - ,(, where the ray is forced to go through

jr(z). Hence e -o(S ,-,'M(:'elo*(' -* can be approximated by Mup(z'). This is the

appropriate definition of the Markov approximation (rather than assuming the medium

is delta-correlated along the z axis) and it immediately yields (7) from (33). In practice,

instead of using the actual unperturbed ray, the tangent to the ray at z is often used.

If the delta-correlated assumption were made, it would correspond to evaluating

M.u(zl) at point C, which is strictly valid only if there is a single unperturbed ray trav-

elling along the z-axis. If the medium fluctuations are isotropic, the correlation of any

point at ' with the point P at z will give the same result because of the parabolic

approximation, and hence the delta-correlated assumption is as good as any other

choice. However, for an anisotropic medium it is important that point B (and hence

(7)) be used, even when the Markov approximation is invoked. Note that (7) can be

used in the presence of a deterministic background refractive index.

The difference between (33) and (7) can be caused by directions different from the

unperturbed ray becoming important. It is in this sense that (33)-(35), which never

refer to unperturbed rays, are more general than (7), which does. A transverse

wavenumber k,, coming, for example, from M, causes the angle to change by

M - kr / k. A transverse error in position of about TrLp / k is made by asuming the

direction of the unperturbed ray. Thus, in order for the Markov approximation to be

valid, it is required that k7Lp / k - /,, where Lr is the transverse scale of concern.

Since LT f 1/kr, the Markov approximation fails at sufficiently small k M LP/LJ. The

parameter a -- kL/L, introduced by Beran and McCoyI3l and discussed further in

Flatte" 141 reflects these considerations. For small a, one can use (33) or its equivalent.

* . ... .-, _o
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V. Path-Integral Derivation

We recapitulate the derivation of the path-integral expresion (7) from (10). Using

the assumed Gaussian behavior of the fluctuations, we obtain from (10)

r.,- ft D9(s) (36)
104

where So is the part of S in (9) that does not involve p, and

V - f si'<MXMS (37)
b2

The expression (38) is an exact representation of the moment of the solution of the par-

abolic equation with Gaussian fluctuations. It is not used in practice as it stands

because V depends on the paths at two values of z, namely z and 0'.

The Markov approximation for the path integral comes from assuming that the

paths do not stray far in transverse space over a distance Lp; they all move approxi-

mately parallel to the unperturbed ray. Thus, in the Markov approximation

V = - : d,' < M(,)M ,(,'> (38)

which only requires knowledge of the path at z. The final result (11) follows directly.

% "o~
o
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VI. Coordinate Systems

Moment equations can be formulated in a variety of coordinate systems, while

path integrals require a rectangular coordinate system. There has been a fair amount

of effort expended on using polar coordinate systems, especially for point source prob-

lems.

The same results (for point sources among others) can be obtained in either polar

or rectangular coordinates. Thus, the results of Shishov1h41 on the intensity correlation,

derived in spherical polar coordinates, can be seen to be identical (after an appropriate

transformation) to the results of Codona el al.,I sI derived in rectangular coordinates. It

was necessary for Shishov to make small angle approximations in addition to the para-

bolic approximation of dropping the second derivative in the propagation direction,

whereas Codona et al. only require the single parabolic approximation.

-. -. -S-
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VIL Summary

We have derived moment equations in coordinate representation under the Mar-

kov approximation that apply in anisotropic, inhomogeneous media with deterministic

background. The derivation shows the relationship between these moment equations

and modified equations that are valid under approximations weaker than Markov; the

second-moment equation of Besieris and Tappert is a special case of these modified

equations.

In a hierarchy of approximations we begin with the parabolic wave equation itself.

A path integral with non-local exponent can be written as an exact solution, although it

is not yet useful in practice. The next level is the approximation that the interaction

strength over a correlation length is small-this "first-order perturbation theory" leads

to the modified moment equations, and in homogeneous, isotropic media, to the stan-

dard moment equations and path-integral expressions. In anisotropic, inhomogeneous

media, however, a further approximation is necessary to obtain the moment equations

and path integral expressions. This further approximation is that the significant flow of

." wave energy, or the important paths, are parallel to the unperturbed ray; we call this

the Markov approximation because its violation implies the appearance of correlations

between successive scatterings. We have shown that the moment equations and the

path-integral expressions for the moments are mathematically equivalent under the

- Markov approximation. Thus the two formalisms have exactly the same physical con-

*" tent. In an anisotropic medium, the moment equation involves a shift operation to cal-

culate the medium correlation function along the unperturbed ray; this form of the

moment equation has not been given before.

We have also pointed out that all appropriate formulae can be derived in a rec-

tangular coordinate system (even for point sources).

Acknowledgement: This work was supported by DARPA.
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Appendix

We must show that the scaling Pri I - (6) holds for integrals of the form

D 1]4 r exp (E*iki*I F(1r) . (A.1)

If F is expandable in a power series (even if the radius of convergence is zero) this result

follows immediately. One expands F and integrates term by term, obtaining a power

series in (h)". By standard methods in the theory of asymptotic expansions, only the

low order terms need to be retained as 5:-. 0.

For singular functions, a demonstration is not as simple. One may worry about

cancellations between terms in the exponent, since the signs might differ.

We will content ourselves with a demonstration in the case likely to arise in prac-

tice. It is common to model a random medium as having a power law structure func-

tion. Thus as two x's become equal, a singularity xi; -xjJP with p >0 might occur in

the integrand. In order to have possible cancellations in the exponent, we assume that

=k - k-, and the exponential factor is expk(ik (le? - )/2$a). We assume, for simpli-

city, that s4 and t, are one-dimensional; higher dimensional singularities are effectively

weaker.

Define P - (oxi + 6z)/2, p - 8g; - z, e - si - s. The singularity from the pre-

vious step, z/ - xj - zS is Le -ar'. The integral to be evaluated is

f 0 Ia e"'"/" faPV) I -a P  (A.2)

We would like to ignore the p dependence in f. However, spurious large-p contri-

butions would arise, even though we are only interested in contributions from p close to

a. To drop the p dependence of f and also to simplify the analysis, we introduce a con-

vergence factor exp(-4p s + -1)/5,2 -. As long as p,v .. , this factor does not change

the integral as Sz--O (we are assuming i >0). Conversely, if the integral in the limit

6z--+0 does not depend on a and r, then p and Y are of order 6z".

The integral is then

I - f i dV- Sp"/ eXp[ -a(p +,)/ , JU -all f(a, V) (A.3)

The p integral can be done:
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I W0 oaf 6811/6 exp[ -a(e + a/S,-1 (A.4)

where M is a conduent hypergeometric function and 01 is a constant independent of

Ssc, and a (as are 02 and 0, below). The hypergeometric function has a part that

behaves as the exponential of its argument for large (positive) values of its argument, a

part that falls as a power (since (p + 1)/2 is positive) and a part at small values of the

argument. These last two parts can be combined into a bounded part. We show that

the exponential part gives the leading behavior and the bounded part is a higher power

of $8.

The contribution 11 from the exponential asymptotic part of M is

It - 0 dv oi - exp[(a3 +a')/Su1 (A.5)

f(e,v) a - +p ( + )I -')/I exp ( aa -
I. 4a5.r -1 1

The exponential from M cancels much of the first two exponentials:

la - 0s dexp-&A a_+ 2 a-4 p/2v) }2 .(I + )(. - 4)/ 2 (A.6)
I 21 4 4&Ss +C

which can be done explicitly. Only the first term in the exponential survives as 5z--0.

The result is independent of a and c, and is

It - 085: 8Za,O) IMI' (A.7)

exactly as would be obtained from the Taylor series expansion for I.

We now turn to the contribution IS from the bounded part of M. We show Is has a

higher power of Ss than I. We can set i to any positive value. At large E we depend on

the fact that 001/ 14 averages to zero for v - SO +0 for any positive 5, but it would be

necessary to examine the detailed behavior of M to use this fact. On the other hand,

for small enough E, it suffices to bound the integral by the integral of the absolute value

of the integrand. The convergence factor provides a cutoff at P, ,- S1 -t/42. Thus

f 4dexpj- /1 I,-j f(o,a,) gives a contribution scaling like 5l1-t/2. Thus I2 is

bounded by an expression which scales as



As long as we have chosen £ small enough, the exponent of St is larger than 1, and Is

can be neglected relative to 11. Thus we have established the necessary scaling of P and

yi even in the singular case.
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Flgure Captions

Figure Is. Moment-equation expression of the MarkM approximatio. The corre-
lation should be taken between a point at z (point P) and an arbitrary
point at a' (point A). Instead it is taken with the point B, obtained by
extrapolating along the unperturbed ray from P. The assumption of
delta-correlated medium fuctuations leads to the incorrect formulation
of correlations between points P and C. The dashed lines indicate the
idea of a scattering ans a function of angle from point P.

Figure lb. Path-integral expression of the Markov approximation. The general
path at s' (point A) is approximated by the path at z extrapolated
along the unperturbed ray (point B).

Figure 2a. Typical a values of the interactions from a Taylor series term in (9) are
indicated by z's. Dashed lines show which interactions are correlated.
It is assumed that LMI, :1.

Figure 2b. A portion of a contribution to (9) which is improperly ordered in "first
order perturbation theory." Such contributions are smali if LpA2M <C1.
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A relativistic derivation of the Schrgdinger equation is given from principles

known to physicists in 1926. Schr6dinger's preference for Hamilton's optical-

mechanical analogy over the relativistic route is discussed. The derivation is

given of a classical analog to the Schr6dinger equation called the parabolic wave

equation, which describes waves propagating in a narrow angular cone; the fact

that this classical version was not discovered until about 1950 is discussed.
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Introductian

Two great triumphs of twentieth century physics, relativity and nonrela-

* tivistic quantum mechanics, have been part of the undergraduate physics curri-

culum for only a few decades. Both these subjects have their paradoxical

aspects with which students must grapple.

It is generally agreed that quantum mechanics is more difficult to accept

than relativity, because of its apparent violations of cherished ideas such as

causality or locality. However, one aspect of quantum mechanics that should

not remain mysterious is the derivation of Schr6dinger's wave equation. On a

suggestion of Debye, Scbrbdinger set himself to writing a wave equation for an

electron around a proton.' Once given the idea that the electron might be

represented by a wavefunction, this is a problem in classical physics; yet

Schrbdinger came out with a "wave equation" that no one had seen before.

The purposes of this article may be stated as follows: 1) to show a simple

derivation of the Schr6dinger equation starting from a classical wave equation

and some physical assumptions that would have been plausible to physicists in

1928; 2) to discuss why Schr6dinger preferred to use Hamilton's optical-

mechanical analogy rather than follow the relativistic route to his equation; and

3) to discuss how physicists have used an analog to the Schr6dinger equation

called the parabolic wave equation in completely classical contexts, and why

nineteenth-century physicists, who certainly had the mathematical tools, did

not write down a Schr6dinger equation in solving some classical wave-

propagation problems. Fimally, the relationships between the full wave equation.

the parabolic wave equation. Huygens' construction, the Schrdinger equation.

and Feynman's path integral are briefly discussed.

I.
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.The ReluavlstU Equaton

Electromagnetic waves obey the classical wave equation

V2F- -B.F = 0 (1)
cu

where F may be a component of the electric or magnetic field. It we desire the

equation that can represent matter as a wave, following de Broglie. we must deal

with the problem of rest mass. Schr6dinger himself solved this problem in 1925.

but did not publish until 1926 for reasons we wilt discuss later.1 By that time

Klein' and Gordon had derived the same equation by generalizing Schr6dinger's

nonrelativistic equation.

The matter-wave equation should be able to describe something like a parti-

cle at rest with finite energy m=2. The connection between energy and fre-

quency w.o = E/ft was not only known but used extensively by 1926. so it is plau-

sible to want a wave function

u = exp (2)

(with no space dependence) to satisfy the fundamental equation. This wave

function was explicitly suggested by de Broglie in 1925, but he failed in his

attempts to find the appropriate equation. 4 It is plausible to simply add a covari-

ant term to (1) in order to have (2) satisfy the equation. One is then led to try

MZ2
Vas - ,8U- - U 0 (3)

as the fundamental, relativistic, equation for free, massive particles. This is the

Klein-Gordon equation. The wavefunction u has something to do with a free par-

ticle, but we will avoid as much as possible discussing interpretations of the

wavefunction. Equation (3) is often justified as the wave analog of the relativistic

energy-momentum relation, E' = pct + mnc 4. transformed using de Brogue's

relations, but the above derivation is preferable pedagogically. The addition of

the new mg term is crucial to all that follows, since without it all waves would

move at speed c. and there would then be no possibility of a nonrelativistic

approximation.

I . ,4-US-IS
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We desire solutions to (3) to represent particles moving through space. We

have one solution (Eq. (2)). but it is not too interesting since it describes a free
particle at rest whose wavefunction Mls all of space and oscillates very fast. Let
us search for more interesting solutions that vary in both space and time. We

try

U. = #(x.t0exP[ t (4)

Putting (4) into (3) results in

Vey _ c 1
2  [c 81 2 c 2  0v I-- A I h h (5)

This is a general equation for #. Since it is an equation that is linear in *'. it

makes sense to consider each Fourier component of #' separately:

* - exp (kz - wt) 1 (6)

where, of course, k = 2/ A and A is the wavelength. If we restrict ourselves to

low-frequency solutions in which

to a (7)

then the OU term in (5) is negligible, and (5) becomes

a = - -e()

which is the free-particle Schrdinger equation. Note that the first derivative in

time and its imaginary coefficient come naturally from the second derivative

because the time dependence of # is a difference frequency from the fundamen-

tal (O.

The low-frequency requirement (7) can be stated in two ways. The first is

obvious:

ho << inc3 ; (9)

..... . . ..,,,. - . , .'..'. .. ,.... ..,....,, -.,,-..-. *',. . 4 - ...' , .* . . .=
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that is, interpreting the frequency of as an energy, that energy must be much

less that the rest-mass energy. A second Interpretation in afforded it we Imagine

i.,making a wave packet of waves like (8). Equation (8) implies

W = (10)

and therefore the group velocity of these waves is

ftk
m = (11)

Using (10) and (11) one quickly shows that (9) gives

welt << c (12)

In other words, the Schrdinger equation (8) is a nonrelativistic approximation

to the Klein-Gordon equation (3). Finally, (9) and (10) can be combined to give

another version of the validity requirement:

S>> (13)
"W

In other words, the Schr6dinger equation is a large-e wielhti approximation to
the full wave equation; that is. the wavelength must be large compared to the

I Compton wavelength of the electron.

M. Addition of an Exernal Potential

The addition of electromagnetic potentials to (3) should follow the rules of

relativistic invariance. It was known in 1926 that I and h/c. the scalar and vee-
*" S

* I tor potentials. are components of a four-vector. The minimal coupling implies

that (3) becomes

[v d- -- ), - (8r - U-)3 - 0 (14)

P ' Consider the case in which 4 = 0. In that case the equation (5) for % becomes

I 1 MC 2m1 2ie
• .- !-!- 8 .- + - -l +. + I -1 - = 0 (15)

4-211
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The size of atoms (known in 19) implies that the relevant Coulomb potentials

felt by an electron are small compared with ic tm; that is

at << nt . (16)

Therefore the terms in (14) satisfy a hierarchy such that the last three terms

are negligible. Again this corresponds to # having low frequency; that is (9) and

(12) are satisfied. The resulting equation is

iaOh I--V + '1,(17)
that is, the full nonrelativistic Schr~dinger equation with external potential

N. The Fine Sructure of Hydrogen

Schrbdinger wrote down equation (14) in 1925, but did not mention it in a

*publication until late 1928. He gave as his reason that an exact solution for the

energy levels of hydrogen disagrees with experiment in the fine structure.1

Since fine-structure energy-level differences are quite small, this amounts to

saying that the neglected three terms in (15) are incorrect. The actual numbers

are elegantly worked out in Schiffs text. where it is shown that the hydrogen

fine structure from the last three terms on the left of (15) is about twice as

large as experiment, and has a slightly different dependence on the orbital

quantum number.

Schr5dinger himself pointed out that the discrepancy probably had some-

thing to do with Coudsrnit and Uhlenbeck's hypothesis of electron spirs. This is

probably the main reason that Schr6dinger did not derive his nonrelativistic

time-dependent equation along the lines of our discussion. And of course it is

one of the reasons why Dirac's contribution, which seemed to find the existence

of electron spin in a "natural" way, is so admired.

However, as will be discussed later, the derivation of the Schradinger equa-

tion from a classical wave equation is much to be desired pedagogically. Given

the many paradoxes of quantum-mechanical matter waves in 1926. including the

existence of spin, the interpretation of the wavefunction, and the inability to

create a dispersion-free wave-packet, the hydrogen-fine-structure discrepancy

4-26-15_- :" ." .-. - .. ...... + -:.--'8..
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Swas hardly a reason toaadntewoeapproach.

V. Antimatter and 1Rectron Spin

Dirac's prediction of antimatter from his relativistic equation for the elec-

tron with spin is rightly considered one of the triumphs of modern theoretical

physics. It is possible to make the same point from the Klein-Gordon equation.

by simply pointing out that the nature of equation (3)-second order in time,

with me appearing rather than m, allows

/ = exp[ + - t (18)

to be a solution as well as u from (2). The same derivation of the nonrelativistic

equation goes through, and as long as eq << mc2 , the two states will not mix. As

the energy • 5p gets larger, the coupling between the two states becomes more

important, leading in lowest order to vacuum polarization, Zitterbewegung, etc.,

and eventually to antimatter production and the necessity for second quantiza-

tion and quantum electrodynamics.

,. ,It was the unwelcome existence of negative-energy solutions to the Klein-

Gordon equation that led Dirac to search for an equation in first derivatives. His

search led eventually to four component spinors, and thus he was forced back to

the situation that is evident in the Klein-Gordon equation at the start-the simul-

taneous existence of positive and negative-energy solutions.

The discrepancy in the hydrogen fine structure cannot be dismissed as an

effect of relativity. The fact is that the spin of the electron is 1/2, not 0. Some

people feel that starting with the Klein-Gordon equation to describe the electron

is therefore too misleading. It should be pointed out that learning the Klein-

Gordon route is quite valuable, since, as Case7 has shown, the Foldy-Wouthuysen

transformation makes the resulting forms for operators and the nonrelativistic

limits quite similar for integer and half-integer spins.

I I
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V1. Relation to Hamilton's Optcal-Mechnoel Analogy

It in of the greatest importance to realize that (17) is a loui-fn quency

approximation to the relativistic equation. It was Schr6dinger's great desire to

make the connection between quantum mechanics end classical mechanics by

the Hamiltonian method that Sommerfeld and Runge used to connect wave

optics to ray optics.' That connection requires taking the dgh-frequewy limit of

the wave theory. Schr~dinger was fully aware that the frequency was associated

with the energy, and that the logical total energy would involve a much larger

value, ncv 2 . It was no problem for him to realize that the requirement for the

classical equations of motion to be valid would be a requirement that the

wavelength is small compared with some characteristic length L for the poten-

tial to change:

A << L (19)

which combines with (10) to give

A L2 <<C. (20)2m

Thus Schr6dinger took the point of view that classical mechanics should be

included in his equation, and took the high-frequency, small-wavelength limit to

satisfy that requirement. but he ignored the fact that the nonrelativistic

requirement at the same time restricted the frequency to be smu!l compared

with a fixed quantity (inc/h). He did realize implicitly that a restricted range

of frequency does exist that satisfies both the nonrelativistic and the classical

mechanics requirements:

6--- << V << (21)
2r&L2f

Note that as t - 0 the range of validity of nonrelativistic classical mechanics

gets larger at both ends. That is why the h - 0 limit is often used as the classical
limit.

It is also useful to put the requirement (21) in terms of a spatial wavelength

requirement (A 21r/k);
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The left-hand inequality expresses the nonrelativistic requirement and the vali-

dity of the Schr6dinger wave equation, while the right-hand inequality expresses

the classical-mechanics requirement.

Schr6dinger's novel use of Hamilton's -. thods, wherein he used

de Brogie's relations to define ci and k in terms of E and p and then created a

wave equation by identifying w and k with operators on a wavefunction, allowed

him to bypass the requirements of relativity and allowed him to ignore the left-

hand inequality in (22). By this method of starting with classical nonrelativistic

equations he avoided both the pitfalls and opportunities associated with

antimatter and electron spin.

VII. The Classical Schr6dinger Equation: The Parabolic Wave Equation
The Schrbdinger equation comes out of the Klein-Gordon equation solely

because of the m 2 term. If the m 2 term were not there, all waves would move at

speed c, and there would be no hope for solutions with small velocity. Therefore

the classical wave equation (1) can never yield the Schr6dinger equation with a

first derivative with respect to time.

However, an analog of the Schrbdinger equation in which the first derivative

is with respect to a spatial coordinate can be obtained in the following way. Sup-

pose the speed of the waves, c, is a function of position, and we look for time-

harmonic solutions

F(z. t) = (z)e (23)

Then our equation becomes the Helmholtz equation

VZu+kZU= 0 (24)

where k = /c is the wavenumber, which is a function of position because of c.

The general solution to this equation involves waves in all directions. How-

ever, let us single out the 2 direction as of special interest, and write

[VF + 0 + k1 = 0 (25)
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where | = Ow + Ow . Equation (25) has some of the characteristics of the

KMein-Gordon equation (3). Let us try a solution of a form which reminds us of

waves travelling in the positive z direction:

U= a(g),'' (26)

The resulting equation for #(z. i, s) is

VF# + [an + 2 ao0 , + k9i# - kAl = 0 (27)

which is remarkably analogous to (5). We see that the ki term is playing the

role of the ml term in the Klein-Gordon equation. If k2 is slowly varying in

space. then we can pick ko such that

jk5 -k'l << kj (28)

In other words, the wave speed c (1) varies by a small fraction of itself, and does

so slowly with respect to L. In that case, will have only small-wavenumber

components

'teE
~ << ko (29)

and the O.w term in (27) is negligible. The resulting equation is

= -V# + (ki - k2)# (30)

which is exactly analogous to the Schr6dinger equation (17). except that Vf is a

two-dimensional Laplacian rather than a three-dimensional one. The constants

in (30) are a bit different from (17). The analogy more direct Let

k(z) = kO[1 +.-()] (31)

where ju(g) is the variation from unity of the index of refraction. Now write (30)

as

2Q69 -V' + 2kjpf4 (32)

and write (17) as

* .:: *+.... ,. . . . . . .. 4-as-so
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=tI0' (33)

• . The analogy is complete, and we see that the appropriate k0 is the inverse

of the Compton wavelength of the electron, and the variable index of refraction

is analogous to the potential V as a fraction of ,nc.

There is an analogy to antimatter in (32). We can find solutiom, to (25)

which are travelling in the negative z direction. These are analogous to. ntipar-

ticle solutions. As long as A is slowly varying and small, the waves going in the

positive and negative directions are decoupled. However, if 1A is strong, or varies

over a small distance, then coupling will occur in the form of backscatering.

This is a classical realization of Feynman's picture of positrons being electrons

moving backwards in time.

Equation (32) is called the parabolic wave equation in the classical context

in which it is used.' 0 It is most used in solving problems in wave propagation

through continuously variable media; for example light through the atmosphere,

- ',radio waves through the ionosphere or interplanetary plasma, or sound through

* the ocean.11

Let us discuss the validity requirements for the parabolic wave equation.

The main ingredient is (28) which states that the variations in the wave speed

must be small compared with unity, in analogy with the nonrelativistic require-

ment (18).

in the quantum-mechanical context the nonrelativistic requirement can be

expressed in a variety of ways; for example, that the wavelength be large com-

pared to some quantity. The analog of this requirement in the classical context

is quite different, because the analog of the wavelength of the quantum-

mechanical # is not the classical wavelength of the propagating wave.

In the classical context we must distinguish between the longitudinal and

transverse components of q. the wavevector of #. and furthermore we have the

wavelength k, defined from k.

Let q = (kT,kL) where k? has components in the x-y plane, and kL is along

the z direction. The first term of (32) must be larger than 0.#. This results in

4-45-85



the requirement

kr << ko (34)

which means that the total wavevector k is directed at a small angle to the z

axis. This latter requirement is the analog of the nonrelativistic requirement.

v << c in the Schrbdinger equation case.

The relation of the various wavenumbers to the characteristics of the

medium index of refraction is quite involved, and lies beyond the scope of this

paper, because it brings in the strength of the fluctuations () as well as the

scale L.

The analogy between the parabolic wave equation and the Schr~inger

equation is expressed pictorially in Fligures 1 and 2. and is summarized in

Table 1.

VIII. History of the Parabolic Wave FquaUon

The parabolic wave equation cc'ild be called the classical Schr6dinger equa-

tion. The strongest difference is just one of variables, since the parabolic equa-

tion is first order in a space derivative rather than the time derivative. A para-

bolic wave equation was written down for the first time in 1948 by Leontovich and

Fock 5 but they did not really write down (32). They wrote down a parabolic

equation for radio wave propagation over the surface of the earth, with no poten-

tial term. Their effect was controlled by diffraction due to the curved boundary

condition over the surface of the spherical earth.

Fock was one of the pioneers in searching for wave equations for quantum

mechanics, so it is not surprising that he was the first to point out the relation-

ship between the parabolic wave equation and the Schr6dinger equation. 13 He

also pointed out that the dependence of the index of refraction for radio waves

on height, which occurs because the atmosphere is stratified, is an analog to the

quantum mechanical potential. It is perhaps surprising that he did not make the

connection until 1950; he also did not discuss the requirements for validity as is

done in this paper.
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Thanks to Fock. the parabolic wave equation with external potential as in

(32) was known to Soviet workers in the 1960's. It was common knowledge by

the time of Tatarskii's classic monograph on light through the turbulent atmo-

sphere.14 (Tatarskil gives neither references nor a very straightforward deriva-

tion.) A further interesting case in which the potential term Is replaced by a

nonlinear term was written down by Kelley,' 5 who was dealing with self-trapped

laser beams.

One may also ask why the parabolic wave equation was not written down one

hundred years earlier, since all the mathematical tools were available once

Hamilton had used complex numbers to represent oscillatory phenomena. Why

did not those mathematical physicists interested in the wave theory of light

write down a parabolic equation for the propagation of light?

The parabolic wave equation is fundamentally a small-wavenumber approxi-

mation. Most physicists were working with the large-wavenumber limit of wave

propagation, namely, geometrical optics. This was especially true of Hamilton,

whose work had tremendous influence over those who followed.

Probably more importantly. experiments were not done in continuous

media. Typical problems involved diffraction around obstacles, and for these

problems, solutions in the form of integrals were directly written down.

Rayleigh typifies the attitude of several generations of physicists by refer-

ring to the problem of continuous media in his Theory of Sound, 14

The variation is supposed to be so slow that no sensible reflection

occurs, and this is not inconsistent with decided refraction of the rays

in travelling distances which include a very great number of

wavelengths... The further development of this part of the subject

would lead us too far into the domain of geometrical optics. The funda-

mental assumption of the smallness of the wavelength..., having a far

wider application to the phenomena of light than to those of sound, the

task of developing its consequences may properly be left to the cultiva-

tors of the sister science.

4-'-5
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In one paragraph be washes his hands of the question and tells his optical

colleagues that it is a geometrical optics problemi It was not unW 1946. when

Feynman"7 wrote down his path integral, that the relation between the various

integral solutions to the differential equations describing wave propagation were

made clear.

DL Huygens-fresnel-Feynman Theory

Huygens attempted to describe light as a wave, in analogy to sound. Ironi-

cally, he used his ideas about secondary wavelets to prove that light travelled in

straight lines; that is, he dealt only with geometrical optics. 1' In fact. Huygens'

construction is mathematically equivalent to the small-wavelength limit of the

full wave equation, namely the unfolding of a contact transformation (the

Hamilton-Jacobi equation for the phase). 19

Over one hundred years passed before attempts were made to generalize

Huygens construction to include diffraction. Fresnel's first attempt to do so

uncovered disturbing difficulties such as the backward wave and the require-

ment that the secondary wavelets had to be emitted one-quarter cycle out of

phase with the incident wave.2 Helmholtz and Iarchhoff attempted to improve

on Fresnel by introducing the so-called obliquity factor (which. among other

things eliminated the backward wave), but neither they nor anyone else have

been able to create a Huygens-like construction that provides a solution to the

full wave equation-L"

After Fresnel, over one hundred more years passed before Huygens' con-

struction was generalized in a way that exactly solved a wave equation.

Feynman's path integral is an exact solution of the Schr6dinger equation."

Therefore, when translated into classical terms, it is an exact solution of the

parabolic wave equation. No obliquity factor appears, and the quarter-cycle

phase shift is relegated to the status of a mathematical normalization factor.

No backward wave appears, since no coupling to a backward wave is allowed in

the parabolic wave equation, as discussed above. Thus the Feynman path

integral can be regarded as the simplest Huygens-Fresnel theory repeatedly

applied over infinitesimal steps in range.
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Feynman was concerned with quantum mechanics, not classical wave propa-

gation; hence he worked with the Schredinger equation. The snalog of generaliz-

ing to the full classical wave equation would have been to try to solve all the

problems associated with relativity, antimatter, and particle production. Thus

the road of Helmholtz and l(irchhoff was not particularly tempting in the

quantum-mechanical context. One could say that Fresnel's difficulties were

solved not by constructing a solution to the full wave equation, but by going back

to Fresnel's simple construction and realizing that It was the solution to an

approximate wave equation, one that is valid for waves propagating in a narrow

angular cone.

Geometrical optics is valid in the limit of infinitesimal wavelength. The par-

abolic wave equation and the Feynman path integral are valid for waves pro-

pagating in a narrow angular cone.

X Conclusion

In 1926. the Schr6dinger equation was a wave equation that had never been

seen before. Yet it does appear in classical contexts, a fact only realized well

after Schr6dinger's work. In classical form it is called the parabolic wave equa-

tion. and its derivation from the full classical wave equation involves a restric-

tion to waves travelling within a narrow cone of angles in a particular direction.

An analogous derivation of Schr6dinger's equation begins with the Klein-Gordon
;1

equation, and need only require that the potential energy is small compared

with mc'. Undergraduates might well be introduced to Schr6dinger's equation

by this route rather than the standard ad hoc approaches.

The development of theories of wave propagation through continuous

media, sometimes with a random component, owes much to the use of the para-

bolic wave equation. The analogy between that equation and the Schr6dinger

equation has brought the full power of much that was learned in nonrelativistic

quantum mechanics to bear on classical wave propagation problems." Most not-

ably, Feynman's path-integral technique has been important in solving problems

in wave propagation in random media (WPRM). Perhaps in the future, quantum-

mechanical problems in condensed matter may be helped by recent progress in

V-, 4-5 -rn
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WPRM. where the medium Is considered as having a statistically fluctuating wave

speed. That would have been appreciated by Schr6dinger.
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1. Typical solutions to classical wave equations.

(a) The full wave equation allows waves to travel in all directions. For an

incident plane wave. such solutions will be generated by medium variations

with scales comparable with a wavelength. Waves at large angles to the

forward or backward directions can be thought of as linear combinations

(couplings) of nearly forward and backward waves.

(b) The parabolic wave equation describes only waves travelling in the

nearly forward or backward directions, and allows no coupling between

them.

2. Typical solutions to quantum-mechanical wave equations.

(a) The Klein-Gordon equation allows particle and antiparticle waves to

travc! at speeds up to the speed of light. For an incident plane wave, such

solutions will be generated by external potentials that have strengths com-

parable with Yc2 . Waves at high speeds can be thought of as linear combi-

nations of particle and antiparticle waves, representing the possibility of

(real or virtual) particle production.

(b) The Schr6dinger equation describes only slowly moving particles or

antiparticles. and allows no particle production.

h
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1 provide here a guide to a few recent renults obtained by the group at the Center

for Studies of Nonlinear Dynamics in the areas of wave propagation in random media.

L Average Arrival Time of Wave Pubes Through Continuous Random Media

A random medium consisting of discrete point scatterers in a homogenous back-

ground will delay the arrival of a pulse, because all scattered paths are of greater

length than the straight-line path from transmitter to reciever. A continuous random

medium is different.

Our recent analysis' points out that a fluctuating continuous medium can cause an

average advance of the pulse arrival time. All previous analyses have dealt with situa-

tions in which pulses are delayed on the average.2 '3 By convention, the ensemble aver-

age of a random medium is taken as the medium reference state, and the small fluctua-

tions about this reference state are thus by definition a zero-mean i andom process. The

arrival-time advance or delay is relative to the travel time through the reference state.

Thus, for example, results through turbulent air or plasma are relative to quiescent air

or plasma, not vacuum.

The behavior of a wave. propagating through a random medium is controlled by

relationships between the wavenumber (k) of the propagating wave, the range (R), and

the strength and size of the medium fluctuations.4 UVaeturated behavior corresponds to

one stationary-phase path (ray), and occurs if the medium fluctuations are weak

enough. In /uily saturated behavior the original ray breaks up into many new microrays

which are statistically independent of each other. Propagation through a medium of

discrete scatterers falls in this category. Partial saturated behavior occurs in a

strongly ftuctuating medium with a power-law spectrum, which has enough small-scale

fluctuations to cause the breakup into many microrays, and enough large-scale fluctua-

tions to make the microray bundle behave like a single ray in its wandering from the

unperturbed ray. Experiments in waves propagating through continuous random media

typically fall into this category. We deal only with the important case in which the

transverse wandering from the unperturbed ray is small compared with the range of

propagation.
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Briefly our results are as follows: if the travel time of a puke is averaged over tn

ensemble of the random medium, with each pulse weighted by its intensity, then the

average pulse is delayed, regardless of the type of propagation behavior, in agreement

with previous results.2 3 However, if the average travel time is obtained without weight-

ing by pulse intensity, then a pulse advance is expected for both unsaturated and par-

tially saturated behavior, while a pulse delay remains for the fully saturated case. The

difference between intensity-weighted and unweighted travel time probes the variance

of the first derivative of the refractive index, smoothed over a microray bundle.

The effect is illustrated by a simple special case. Consider a point source and

point receiver separated by range R, and a homogeneous medium in the absence of

fluctuations, so that the unperturbed ray from source to receiver is a straight line. The

random medium is concentrated in a "phase screen" at a distance z from the source.

This screen has the effect of advancing the time of a wavefront by a random amount

" t(z) where z is the position on the screen, and f(z) is a stationary Gaussian random

process with zero mean. (We take z as one-dimensional for simplicity.)

Weak fluctuations-In the geometrical optics limit only one ray exists from source to

receiver. The travel time for a path through point x is:

T(z) w To + 0.5c-' Az 2 - t(z) (1.1)

where A- = z(R - z)/R. By Fermat's principle the ray is at the point z, such that

T(z,) is a minimum. For the case of weak fluctuations we may expand t(Z) as

I(s) = to + t': + 0.5t z (1.2)

The position of the ray follows to first order as
z,= A-co ' (1.3)

The travel time of the ray is then

T(z,) - To + 0.5oA - ItI2 - to - coA -1 t 2  (1.4)

This case requires that, typically

IcoA-' 2 1*0 (1.5)

But t (and hence to and 91) are (by construction) random variables with zero mean.

"- . . . . .... . ...... .%* . . . .



Tnerefore the Is term will disappear in the averape travel time and the only elect of

the fluctuations will come from the e terms. These terms trim because the ray has

moved away from its unperturbed position. The first t1 term is positive, corresponding

to a pulse delay, and represents the effects of geometry; the perturbed path is physically

longer than the unperturbed one. The second 81 term is negative, corresponding to a

pulse advance; we call this the Format term; the ray sought out a region of the medium

with a pulse advance. The Fermat term is twice as large in magnitude as the geometry

term. The average travel time is

< 1- To-O.5c A - 1<9> (1.6)

so that the pulse on the average arrives early.

There is a subtlety to this result. In the weak-fluctuation limit the intensity is

controlled by the focussing due to the curvature of the wavefront as it exits the phase

screen. It is not difficult to show that the intensity I is, to first order,

I = 1 +A-co t N  (1.7)

Consider the intensity-weighted average travel time:

=T(zt) = T@ -0.5co A - 1 <94> - coA - 1  tt> (1.8)

where the last term comes from the correlation between the intensity and the travel

time.

For any random function t(z) whose Fourier components are uncorrelated (i.e., the

correlation function is translation-invariant):

<= - t' (1.)

Therefore

=IT(x,) - To +o.5c 0A - '< 2t> (1.10)

In other words, the intensity-weighted average travel-time is delayed by fluctua-

tions by exactly the amount that the unweighted average is advancedl The focussing

effect exactly canceled the Fermat term leaving a resultant equal to the geometry effect

alone. This occurs because a negative fluctuation, which delays the pulse, sets as a

converging lens to increase the intensity.

-. ... ? a, . -. . b .. -.. + ' + , t_ %'" r % - . eq "i+I•€-.,,.... . q -. %.•
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The simple example of a phae screen in the weak-fluctuatios geometrical-optics

limit has illustrated our point. Other remarks on generalisations to extended media
and strong luctuations, as well as a rigorous extension of these results by means of a

path-integral method to include diffractive effects in a power-law medium, are included

in Reference 1.

There is no difficulty in extending the above results from a phase screen to

extended media in which (1.6) and (1.10) are replaced by

< T.> -To 0.5c,' f d , A(r) [f dO ,(,.)] (.1)

<IT > - To - +0.5c' f d A-'(z) [f dzf' p,,,')j (1.12)

P.(, ,') = <8. P(Z)8., (,) > (1.13)

where 8. A(z) is the transverse gradient of the refractive index due to the fluctuations

at location z along the unperturbed ray. These results require the Markov approxima-

tion (that is, the quantity in square brackets in (1.11) is a local function of z). If an

incident plane wave rather than a point source is used, all three terms (geometry, Fer-

mat, and focussing) are reduced by a factor of three. If the Markov approximation is

not made, the ratio between Fermat and geometry remains -2, while all terms are

modified by terms of order L,/R, where L. is the longitudinal correlation length of the

medium fluctuations.

An important modification of the above result occurs if, in the absence of fluctus-

tions, the medium has focussing properties. In ocean sound propagation this is due to

the sound channel. In radio wave propagation from pulsars this might be due to very

large-scale medium fluctuations that are effectively frozen during the time of observa-

tion. The modification can be simply expressed by generalizing A- (a) in (1.11-1.12) for

a curved ray.' The key result is that A- (z) can be negative for various regions along

the ray, and hence the geometry term can be negative for curved rays. This complication

is crucial to the comparison between calculation and experiment in the ocean, though

probably not in other media. Note that this effect provides another, different mechan-

ism by which fluctuations in a medium may cause an average pulse advance.

A numerical study of (1.11) for acoustic rays through ocean internal waves has

revealed this effect as a significant bias in the measurement of large-scale ocean eddies

by acoustic means. Typical examples of experiments would be waves travelling over a

,,V . r,. " ,, , 9% %*" ," " ," ' % " %" . . . " ". ". .. . . ." \.". ' "'.' - ,... . .. . .. - -y_ ., ,.,,, ?,',.,.,,,,,. , ,,, ,.,, ,, . , ,. ,. .,. • , ,.., *,,. %........... ..
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range of 1,000 km, whom travel times are modifled by about 20 me due to a single eddy

of 10-km sine. The efect of random internal waves along this path is calculated to be
of the same order. Therefore an average change in the travel time of a long-range

ocean ray could be interpreted either as the effect of an eddy wandering scrot the ray,

or as the effect of the entire internal-wave Sold changing its strength.

L Comparison between Moment Equations and Path-Integral Expressions for

Wave Propagation in Random Media

Many problems in wave propagation through random media concern phenomena in

which there is no significant backscatter, so that a parabolic approximation may be

made to the wave equation! In these cases a further approximation, called the Markov

approximation, 7 leads to relatively tractable mathematical expressions for moments of

the field that can be used for practical calculations. Two quite different formalisms

have been used in this context: the moment-equation and path-integral techniques.

A path-integral expression for a general moment of the field of a wave propagating

through an inhomogeneous, anisotropic medium in the presence of a deterministic back-

ground refractive index has been derived s and the expression has been used for specific

calculations. 4, "6

Moment equations in coordinate representation have been derived for homogene-

ous isotropic media in the absence of a deterministic background 7 Treatments of inho.

mogeneity, anisotropy, and deterministic background by moment-equation techniques

have heretofore been confined to special caes involving the first and second

moments.'*- 1

We present here general moment equations in coordinate representation that

account for inhomogeneity, anisotropy, and deterministic background, but require the

Markov approximation. We have derived these equations12 using the time-ordered-

product method of Van Kampen,13 which also provides a derivation of equations that

are valid under conditions more general than the Markov approximation. The modified

equations are more complicated than those that require the Markov approximation: a

special case was previously derived by Besieris and Tappert.14

. • .o o - . - . , . .° o . o . o . . . . . . . . .
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We have also shown that our new general moment equations derived under the

Markov approximation are mathematically equivalent to the path-integral expresions

for the moments that have been previously presented. Thus, the two popular formal.

isms, under the Markov approximation, are not different in content.

Consider waves travelling predominantly in the z direction. Let I* be a tranv-rse

coordinate (e.g. two-dimensional, but in fact general), and k be a reference wave

number (k - 2w/C 0 ), where w is the wave frequency and C0 is a reference wave

speed). Express the full wave field as

V(r, Z') = (V'Z) exp[ ik(z -Co)J (2.1)

!" Let the wave speed (a function of position only) be

CrZ)= 00  2 2U0 (r) - 2,pcf, [)COII + (4((r) + P(r. Z)](2.2)

where U0 represents the deterministic background and p represents the fluctuating ran-

dom medium, assumed to be a realization of a zero-mean Gaussian process.

Then, the parabolic equation (in rectangular coordinates) for the reduced wave

function i is:

ik8,#p M - 2 + k2U.(lF)O + k'ia(r z)O (2.3)
2

where V2 is the transverse Laplacian.

A moment r is the ensemble expectation value of a product of t"s and 'a where

each 01 or P* is evaluated at a different position r and wavenumber ki. We write, in

abbreviated form,

< (2.4.

Define an operator L0 such that

:LOV + k U (2.5)

The terms that apply to the 1Ps use the plus sign and those that apply to the n 's use

the minus sign. The subscript j requires that V2 operate only on i; and Uo0  M 1 o(r).

" . .. -pq
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Define the important combination of fluctuation quantities u

M(s) - E kj (rj,,) (2.6)
i-i

0. Our general moment equation under the Markoy approximation can be written
a*

8, (,) = - Lo - -. f ds < m(s)M,.(,1 > r..(z) (2.7)

'where Mft(z) is obtained by evaluating M(z) with all the i at z shifted by the

transverse distance that a deterministic ray through (1, z) moves in travelling from z

to z' (see Figure 1). In other words Mf (z' is evaluated at point B: i.e. i = (z )

where the ray is forced to go through t (z). The particular ray is determined not only

by the local position (r, z), but also by the initial conditions on the moment; for exam-

ple, the location of a point source, or the direction of a plane wave.15 The unphysical

assumption of delta-correlated medium fluctuations along the propagation direction

would imply that M. A01(z') would be evaluated at point C: i.e. i(z) (and z'). In the

isotropic case (or in the case of propagation along a principal axis of the anisotropy)

the difference between evaluating M jq(z') at j (z) and E,, (zJ) is negligible, and the

delta-correlated assumption is adequate. In the anisotropic case, the necessity of

defining the unperturbed ray makes (2.7) somewhat complicated to apply for general

initial conditions. However, since (2.7) is a linear equation, superposition can be used

whether the source is a point, an incident plane wave, or an arbitrary coherent or

incoherent sum of point sources.

We now turn to the path integral method. Equation (2.3) has the formal solution

- D r(z) cis (2.8)

where f Dr(z) means integration over paths, 9(z) is a transverse vector indicating the

position of the path at z, and

R

0 1 2.

In order to obtain a given moment, expressions like (2.8) (or its complex conjugate) are

multiplied together, and the ensemble average is taken:
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DrIs) <. -(2.10)

The Markov approximation yields (See Section V):

I' rD , (z) exp fdz -Iikj Uo - d-' < M(s) M.fo ()>

(2.11)

We have shown that the moment equations (2.7) and the path integral expressions

(2.11) are mathematically equivalent.12

Moment equations can be formulated in a variety of coordinate systems, while

path integrals require a rectangular coordinate system. There has been a fair amount

of effort expended on using polar coordinate systems, especially for point source prob-

lems.

The same results (for point sources among others) can be obtained in either polar

or rectangular coordinates. Thus, the results of Shishovis on the intensity correlation,

derived in spherical polar coordinates, can be seen to be identical (after an appropriate

transformation) to the results of Codona el al.,' 7 derived in rectangular coordinates. It

was necessary for Shishov to make small angle approximations in addition to the para-

bolic approximation of dropping the second derivative in the propagation direction,

whereas Codona et at. only require the single parabolic approximation.

We have derived moment equations in coordinate representation under the Mar-

kov approximation that apply in aniotropic, inhomogeneous media with deterministic

background. The derivation shows the relationship between these moment equations

and modified equations that are valid under approximations weaker than Markov; the

second-moment equation of Besieris and Tappert is a special case of these modified

equations.

In a hierarchy of approximations we begin with the parabolic wave equation itself.

A path integral with non-local exponent can be written as an exact solution, although it

is not yet useful in practice. The next level is the approximation that the interaction

strength over a correlation length is small-this "first-order perturbation theory" leads

to the modified moment equations, and in homogeneous, isotropic media, to the



standard moment equations and path-integral expressions. In anlsotroplc, inhomogene-

oue media, however, a further approximation i necessary to obtain the moment equa-

tions and path integral expressions. This further approximation is that the significant

low of wave energy, or the important paths, are parallel to the unperturbed ray; we

0- call this the Markov approximation because its violation implies the appearance of

correlations between successive scatterings. We have shown that the moment equations

and the path-integral expressions for the moments are mathematically equivalent under

the Markov approximation. Thus the two formalisms have exactly the same physical

content. In an anisotropic medium, the moment equation involves a shift operation to

calculate the medium correlation function along the unperturbed ray; this form of the

moment equation has not been given before.

ff.Series Expansion of the Fourth Moment

We have developed a series expression for the fourth moment of a beamed field

incident on a random phase screen or an extended medium.17 The series has a symmetry

that allows its first few terms to generate useful approximations at both low and high

spatial frequency. The parabolic wave equation, the Markov approximation, and Gans-

sian refractive index fluctuations are assumed. The result for the phase screen is

obtained by Green's-function techniques. The extended-medium result is derived in an

analogous manner using path integral methods. The same results can also be derived

by moment-equation methods. The behavior of certain leading terms agree with previ-

ons results for plane-wave and point-source geometries.

We consider waves propagating from an arbitrary source distribution in a random

medium. We assume the statistics of the medium are locally homogeneous, and we

make the Markov approximation; i.e. the field fluctuations induced within a correlation

length along the propagation direction are weak. For a more complete discussion see

another of our papers.'3 The wave propagation is characterized by narrow angular

scattering due to the small random luctuations in refractive index. It is then con-

venient to write the complex monochromatic scalar field as E(f,)eos where a is the

propagation direction, ris the transverse coordinate and k is the wavenumber of the

• • . m • - • . ., .. .
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wave with no refractive index fuctuations.

The random nature of the Gelds is conveniently described by statistical moments

evaluated in the transverse plane located at distance R. Ensemble averages of random

variables are denoted by < >. The nrst moment

r,(,R) - (3.1)

or average of the field and the second moment

rFr(,r,R) - <E((,R)E )(xr )> (3.2)

or mutual coherence function are well understood.7 However, there are few analytic

results for the fourth moment

. 4 (fr,,x,i, ,R) = <E(i,R)EO(,R)E(,R)E*(,R)> (3.3)

Previous theoretical work concentrated on plane-wave and point-source geometry. We

present three main results for arbitrary source distribution.

A series expression for the fourth moment is derived as an expansion of the

Green's function for the fourth moment, thus avoiding the difficulties associated with

the source distribution. For the thin-screen problem, the expansion quantity is a combi-

nation of phase structure functions. For the extended random media, the expansion

quantity is an analogous combination of phase structure function densities. The

Green's function is expressed as a multiple path integral. The resulting series of path

integrals is evaluated with a useful identity.

Our second result is the generation of two series for the intensity correlation or

intensity spectrum. The fourth moment r4(rj,r2,,4,R) has the obvious symmetries

that it is unchanged by interchanging r and f3 or by interchanging r2 and r. Each

term of the series expansion does not share the symmetry of the entire expression.

Thus two separate series are obtained by invoking symmetry. In principle, either series

could be summed to give F4. We demonstrate, however, that it is better to consider

both series in order to describe the fourth moment with the fewest number of terms.

This assertion is demonstrated for the second moment of intensity or intensity correla-

tion, C(fI,f,R), which is a special case of the fourth moment, i.e.

C(frR) - <I(fR)I(2.R)> - =Z(,f,,f) - r 4 (,,f,1) (3.4)

Note that the symmetry of the fourth moment has been explicitly indicated. A clear

F.' -".." - ." ". .-". . .",% ,-. ." .. ' . .. ,-_,.. . . . . . . - -q



presentation of the behavior of the intensity correlation series obtained from the fourth

moment expansion requires the introduction of a spatial spectrum of intensity £uctua-

tions for a spatially nonstationary random process. We adopt the definition

(2. ) 7 0(pr.PR)citdjr (3.5)

where

S r. + r.) r r, (3.6)

2

(Note the free format of the argument list of functions). The spectrum has the pro-

perty

00

f 40,g(1 R) di" = C(p,0,R) = <(pR) 2> (3.7)

It should be noted that the spatial spectrum may depend on the centroid I.

Since there are two series for the intensity correlation there are also two series for

the intensity spectrum. The leading terms of one series for 4(pR) describe the small

q' behavior while the other series is valid at high i. The rate of convergence of each

series provides a criterion for merging the two results to produce a complete expression

for the intensity spectrum. In general, an analogous treatment of the intensity correla-

tion series is not possible since the leading terms of both series do not converge to the

variance as the spatial separation approaches zero.

Our third result is the demonstration of the equivalence of path integral and

moment-equation methods. Early theoretical work on WPRM concentrated on

geometrical optics and the method of small perturbations.7,'a These two approaches

were limited to weak scattering conditions. This restriction was removed with the

introduction of differential equations for the moments of the field."9 Functional tech-

niques of high energy physics (path integrals and operator methods) provided another

point of view to WPRM.Y° 's The moment equation method and functional techniques

are equivalent' 2 and must generate identical results when expansions are performed in

the same quantity. This equivalence can be demonstrated by deriving the same fourth

moment series expression using moment-equation methods.1 7
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An example of the calculation of the first two terms in the expansion for a particu-

lar case is shown in Figure 2.

IV.Summary

Descriptions have been given of three recent results in the theory of wave propaga-

tion through random media. The first result is that pulse arrivals can be advanced in

time by the imposition of a zero-mean random wave-speed fluctuation on the medium.

There are many subtleties to the interpretation of this effect; these subtleties involve

intensity weighting, curved rays, and strength of fluctuations. The second result is that

moment equations can be written that are mathematically equivalent to the path

integral expressions for a general moment, but the moment equations so obtained under

the Markov approximation are not quite the standard ones used. The equivalent

moment equations require knowledge of the unperturbed rays between source and the

point of interest. The third result is a series expansion of the general fourth moment

with arbitrary source distribution: a series expansion whose first few terms adequately

approximate the high-spatial-frequency part of the intensity spectrum. Previous work

in the high-spatial-frequency regime had required the summation of a large number of

terms.

-. *;.,°.* -... . . * .7 1 -l
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Fliur. Captions
S

Figure Is. Moment-equation expression of the Markov approximation. The corre-
lation should be taken between a point at z (point P) and an arbitrary
point at z ' (point A). Instead it is taken with the point B, obtained by
extrapolating along the unperturbed ray from P. The asumption of
delta-correlated medium nuctuations leads to the incorrect formulation
of correlations between points P and C. The dished lines indicate the
idea of a scattering as a function of angle from point P.

Figure lb. Path-integral expression of the Markov approximation. The general
path at z' (point A) is approximated by the path at z extrapolated
along the unperturbed ray (point B).

Figure 2. The leading terms of the intensity spectrum versus normalized spatial
frequency, qRj, where R! = (Rll)k is the Fresnel scale. The curves
are calculated from expressions given by Gochelashvily and Shishov
[19751 for the case of plane waves incident on a random phase screen
with a Kolmogorov spectrum of phase fluctuations and De(R)=400.
The (-) sign indicates that 04(q) is negative at high frequency.
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